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Structure of Convex Sets



Recitation 1 September 1, 2023

1.1 Review

Example 1.1 Show that if A ⊆ B then conv(A) ⊆ conv(B). Does the converse hold?

�

Proof Observe that A ⊆ B ⊆ conv (B), therefore conv (B) is a convex set that contains A.

By definition of convex hull, conv (A) ⊆ conv (B). However, the converse is not true. Consider

A = Q, B = R\Q, then conv (A) = conv (B) = R, but A ∩B = ∅.

Example 1.2 Show that conv (A ∩B) ⊆ conv (A) ∩ conv (B), and find an example that the

containment is strict.

�

Proof

A ∩B ⊆ conv (A) and A ∩B ⊆ conv (B)

=⇒ conv (A) and conv (B) are convex sets containing A ∩B
=⇒ conv (A ∩B) ⊆ conv (A) and conv (A ∩B) ⊆ conv (B)

=⇒ conv (A ∩B) ⊆ conv (A) ∩ conv (B) .

Consider A = Q, B = R\Q, then conv (A) ∩ conv (B) = R ∩ R = R, but conv (A ∩B) = ∅.

The following proposition shows that the convexity of a set is invariant under some operations.

Proposition 1.1 (Operations Preserve Convexity)

♠

The following are all true.

1. Let Xi, i ∈ I be an arbitrary family of convex sets. Then
⋂
i∈I Xi is a convex set.

2. Let X be a convex set and α ∈ R, then αX is a convex set.

3. Let X, Y be convex sets, then X + Y is convex.

4. Let T : Rd → Rm be any affine transformation.

(a). If X ⊆ Rd is convex, then T (X) is a convex set.

(b). If Y ⊆ Rm is convex, then T−1(Y ) is convex.

Proof

1. Let x,y ∈
⋂
i∈I Xi. This implies that x,y ∈ Xi for every i ∈ I. Since each Xi is convex,

for every λ ∈ [0, 1], λx + (1−λ)y ∈ Xi for all i ∈ I. Therefore, λx + (1−λ)y ∈
⋂
i∈I Xi.



1.2 Exercises

�

2. ∀x1,y1 ∈ αX, ∀λ ∈ [0, 1], there exist x2,y2 ∈ X such that x1 = αx2,y1 = αy2.

Therefore, λx1 + (1− λ)y1 = λ(αx2) + (1− λ)(αy2) = α(λx2 + (1− λ)y2︸ ︷︷ ︸
∈X

) ∈ αX.

3. ∀a,b ∈ X + Y, ∀λ ∈ [0, 1], there exist x1,x2 ∈ X and y1,y2 ∈ Y such that a = x1 + y1

and b = x2 + y2. Therefore,

λa + (1− λ)b = λ(x1 + y1) + (1− λ)(x2 + y2)

= λx1 + (1− λ)x2︸ ︷︷ ︸
∈X

+λy1 + (1− λ)y2︸ ︷︷ ︸
∈Y

∈ X + Y.

4. (a). ∀x1,y1 ∈ T (X), ∀λ ∈ [0, 1], there exists x2,y2 ∈ X such that x1 = Ax2 + b and

y1 = Ay2 + b for some A ∈ Rm×d and b ∈ Rm. Therefore,

λx1 + (1− λ)y1 = λ(Ax2 + b) + (1− λ)(Ay2 + b)

= λAx2 + (1− λ)Ay2 + λb + (1− λ)b

= A(λx2 + (1− λ)y2︸ ︷︷ ︸
∈X

) + b ∈ T (X).

(b). Note that T−1(Y ) = {x ∈ Rd : T (x) ∈ Y }, then ∀x1,x2 ∈ T−1(Y ), T (x1) ∈ Y and

T (x2) ∈ Y . Therefore, for any λ ∈ [0, 1],

T (λx1 + (1− λ)x2) = λT (x1)︸ ︷︷ ︸
∈Y

+(1− λ)T (x2)︸ ︷︷ ︸
∈Y

∈ Y,

this proves λx1 + (1− λ)x2 ∈ T−1(Y ).

1.2 Exercises

In the first exercise we will see how to use part 4. of Proposition 1.1 to prove the convexity

of ellipsoids.

Theorem 1.1 (Eigendecomposition)

♥

Let A ∈ Rd×d be a symmetric matrix, then there exists a matrix U ∈ Rd×d such that UTU = I

and

A = UΛUT,

where Λ is the diagonal matrix with the diagonal entries equal to the eigenvalues of A.

Remark Both directions would hold if A is normal, i.e., ATA = AAT.

� Exercise 1.1 Let A ∈ Rd×d be a positive definite matrix and c ∈ Rd. Show that the ellipsoid

E(A, c) := {x ∈ Rd : (x− c)TA−1(x− c) ≤ 1}

3



1.2 Exercises

is a convex set.

�

Proof By Theorem 1.1, we define the affine transformation T (x) = A−
1
2 (x − c). Observe

that the image of the set E(A, c) under this transformation, denoted T (E(A, c)), is the unit

ball in Rd. As the unit ball in Rd is a convex set, the conclusion immediately follows from part

4(b) of Exercise 1.1.

The following exercise study the convexity of the solution set of a quadratic inequality.

� Exercise 1.2 Let C := {x ∈ Rd : xTAx + bTx + c ≤ 0}.
1 Show that C is a convex set if A is positive semi-definite.

2 Show that the intersection of C and the hyperplane {x ∈ Rd : 〈α, x〉 = β} (where

α ∈ Rd\{0}, β ∈ R) is convex if the matrix A+ λααT is positive semi-definite for some

λ ∈ R.

�

Proof

1 Consider arbitrary vectors x,y ∈ C and any scalar λ ∈ [0, 1]. First, observe that the

inequality

2xTAy ≤ xTAx + yTAy (1.1)

follows from (x− y)TA(x− y) ≥ 0, which is true since A � 0. Therefore, we have

[λx + (1− λ)y] TA [λx + (1− λ)y] + bT [λx + (1− λ)y] + c

=λ2xTAx + (1− λ)2yTAy + 2λ(1− λ)xTAy + λbTx + (1− λ)bTy + c

(1.1)

≤ λ2xTAx + (1− λ)2yTAy + λ(1− λ)(xTAx + yTAy) + λbTx + (1− λ)bTy + c

=
[
λ2 + λ(1− λ)

]
xTAx +

[
(1− λ)2 + λ(1− λ)

]
yTAy + λbTx + (1− λ)bTy + c

=λ
(
xTAx + bTx + c

)
+ (1− λ)

(
yTAy + bTy + c

)
≤ 0.

thus proving that C is convex.

2 We just need to show C ′ :=
{
x ∈ Rd : xTAx + bTx + c ≤ 0, αTx = β

}
is convex. Ob-

serve that αTx = β =⇒ λxTααTx − λβ2 = 0, adding this to the first inequality one

obtains

C ′ = {x ∈ Rd : xT(A+ λααT)x + bTx + c− λβ2 ≤ 0, αTx = β}
= {x ∈ Rd : xT(A+ λααT)x + bTx + c− λβ2 ≤ 0} ∩ {x ∈ Rd : αTx = β},

which is the intersection of two convex sets, thus convex.

4
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2.1 Review

Theorem 2.1 (Characterization of closed sets in Euclidean space)

♥A set C ⊆ Rd is closed ⇐⇒ every convergent sequence in C has its limit point in C.

Definition 2.1 (Compact set)

♣

A set C ⊆ Rd is compact if for every family {Ui}i∈I of sets with Ui ⊆ Rd open and C ⊆
⋃
i∈I Ui

there exists a finite subset I ′ ⊆ I with C ⊆
⋃
i∈I′ Ui.

Theorem 2.2 (Heine-Borel Theorem)

♥A set C ⊆ Rd is compact ⇐⇒ C is closed and bounded.

Theorem 2.3 (Bolzano-Weierstrass Theorem)

♥Every bounded sequence in Rd has a convergent subsequence.

�

Proof [Proof Sketch] By the Completeness Axiom for real numbers we know that every

bounded sequence in R has a convergent subsequence. Then use this argument iteratively on

coordinates to prove that every bounded sequence in Rd has a convergent subsequence.

Theorem 2.4

♥

Let f : Rd → Rn be a continuous function, and C be a compact set in Rd. Then f(C) is a

compact set in Rn.

�

Proof Let {Ui}i∈I be a family of sets with Ui ⊆ Rn open and f(C) ⊆
⋃
i∈I Ui. Then

f−1(Ui) ⊆ Rd is open for every i ∈ I and C ⊆
⋃
i∈I f

−1(Ui). Since C is compact, there exists

a finite subset I ′ ⊆ I such that C ⊆
⋃
i∈I′ f

−1(Ui). Then f(C) ⊆
⋃
i∈I′ Ui, which implies that

f(C) is compact.

Theorem 2.5 (Weierstrass’ Theorem)

♥

Let C ⊆ Rd be a compact set, and let f : Rd 7→ R be a continuous function. Then there

exist xmin,xmax ∈ C such that f(xmin) ≤ f(x) ≤ f(xmax) for all x ∈ C.



2.1 Review

�

Proof Since f is continuous and C is compact, f(C) is compact by Theorem 2.4. Then by

Theorem 2.2 f(C) is closed and bounded. The boundedness implies that inf f(C) and sup f(C)

are finite, and by definition there exist {an}n∈N and {bn}n∈N such that f(an)→ inf f(C) and

f(bn) → sup f(C). Then the closedness of f(C) implies that inf f(C), sup f(C) ∈ f(C) and

there exist xmin ∈ f−1(inf f(C)) and xmax ∈ f−1(sup f(C)) such that f(xmin) ≤ f(x) ≤
f(xmax) for all x ∈ C.

Example 2.1 C ⊆ Rd is a compact convex set ; cone(C) is closed.

�Proof An example is provided in Figure 2.1.

(0, 1)

(0, 0)
x

y

Figure 2.1: X = {(x, y) : x2 + (y − 1)2 ≤ 1}, but cone(X) = {(x, y) : y > 0} ∪ {(0, 0)} is not
closed.

Example 2.2 X ⊆ Rd is a closed set ; conv(X) is a closed set.

�

Proof Consider X = ({0} × [0, 1]) ∪ ([0,+∞)× {0}), which is a closed set in R2. However,

conv(X) = [0,+∞)× [0, 1) is not closed.

Example 2.3 X, Y ⊆ Rd are closed sets ; X + Y is a closed set.

6
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�

Proof Consider X = {n + 2−n : n ∈ N+} and Y = Z, which are closed sets in R. Observe

that a convergent sequence {2−n}+∞
n=1 ⊆ X + Y , but limn→+∞ 2−n = 0 /∈ X + Y.

Example 2.4 X, Y ⊆ Rd are closed convex sets ; X + Y is a closed set.

�

Proof Consider X = {(x, y) ∈ R2 : y ≥ ex} and Y = {(x, 0) : x ≥ 0}, which are both closed

convex sets in R2. However, X + Y = {(x, y) ∈ R2 : y > 0} is not closed.

2.2 Exercises

� Exercise 2.1 Show that if X is compact and Y is closed, then X + Y is closed.

�

Proof Let’s consider an arbitrary convergent sequence xi+yi → z where xi ∈ X and yi ∈ Y
for each i ∈ N+. Our goal is to establish that z ∈ X + Y . Due to the compactness of X, there

exists a convergent subsequence xik → x for some x ∈ X. Along this subsequence, we find

that

lim
k→+∞

(xik + yik) = z,

implying that yik → z − x as k → +∞. Given that Y is closed, it follows that z − x ∈ Y .

Consequently, z = x + (z− x) belongs to X + Y .

� Exercise 2.2 Let a1, . . . , an ∈ Rd. Then cone ({a1, . . . , an}) is closed.

Proof Consider a convergent sequence {xi}i∈N ⊆ cone ({a1, . . . , an}) converging to x ∈ Rd.

By Carathéodory’s Theorem (Theorem 2.2.13), every xi is in the conical hull of some linearly

independent subset of {a1, . . . , an}. Since there are only finitely many linearly independent

subsets of {a1, . . . , an}, the conical hull of one of these subsets contains infinitely many ele-

ments of the sequence {xi}i∈N. Thus, after passing to that subsequence, we may assume that

{xi}i∈N ⊆ cone
({

a1, . . . , ak
})

where a1, . . . , ak are linearly independent. For each xi, there

exists λi ∈ Rk
+ such that xi = λi1a

1 + . . .+ λika
k. If we denote by A ∈ Rd×k the matrix whose

columns are a1, . . . , ak, then xi = Aλi. Since the columns of A are linearly independent, there

exists a matrix B = (ATA)−1AT ∈ Rk×d (since in Euclidean space rank(ATA) = rank(A), and

thus ATA is invertible) such that BA is the identity matrix. Thus, Bxi = BAλi = λi for

7



2.2 Exercises

�

every i ∈ N. Since {xi}i∈N is a convergent sequence, it is also a bounded set. This implies that{
λi
}
i∈N is a bounded set in Rk

+ because it is the image of a bounded set under the linear (and

therefore continuous) map given by the matrix B. Thus, by Theorem 2.3 there is a convergent

subsequence λi` → λ ∈ Rk
+. Taking limits,

x = lim
`→∞

xi` = lim
`→∞

Aλi` = Aλ.

Since λ ∈ Rk
+, we find that x ∈ cone

({
a1, . . . , ak

})
⊆ cone ({a1, . . . , an}).

� Exercise 2.3 If X is a set of affinely independent points, then dim(aff(X)) = |X| − 1.

�

Proof Let X = {x1, . . . ,xd,x} for some d ∈ N+, and now |X| = d + 1. By Theorem 2.2.6,

L = aff(X)− x is a linear subspace. We claim that (X\{x})− x = {x1 − x, . . . ,xd − x} := B
is a basis for L. By Proposition 2.2.5, B is linearly independent, so we just need to show that

span(B) = L. Notice that

z ∈ L ⇐⇒ z = λ1x
1 + · · ·+ λdx

d + λd+1x− x, where
d+1∑
i=1

λi = 1

⇐⇒ z = λ1x
1 + · · ·λdxd + λd+1x−

d+1∑
i=1

λix, where
d+1∑
i=1

λi = 1

⇐⇒ z =
d∑
i=1

λi(x
i − x)

⇐⇒ z ∈ span(B).

Therefore, dim(aff(X)) = dim(L) = d = |X| − 1.

� Exercise 2.4 Let X ⊆ Rd be a set. Then X is a linear subspace if and only if X is both a

cone and an affine subset.

�

Proof It is direct to show the forward direction. For the reverse direction, suppose X is

both a cone and an affine subset. ∀x,y ∈ X, λ, γ ∈ R, then

λx + γy = λx + γy + (1− λ− γ)0 ∈ X,

where the first equality holds since X is a cone.

8



2.2 Exercises

� Exercise 2.5 Let C ⊆ Rd, then span (C − C) = aff(C)− x̄ for any x̄ ∈ C.

�

Proof ∀z ∈ span (C − C), z = γ1(x1−y1)+· · ·+γt(xt−yt) for some x1, . . . ,xt,y1, . . . ,yt ∈ C
and γ1, . . . , γt ∈ R. Then z = γ1x

1+· · ·+γtxt+(−γ1)y1+· · ·+(−γt)yt+x̄−x̄ ∈ aff(C)−x̄ where

x̄ is any point in C since
∑t

i=1 γi +
∑t

i=1(−γi) + 1 = 1, this proves span (C − C) ⊆ aff(C)− x̄.

To show the reverse inclusion, ∀z ∈ aff(C)− x̄ for any x̄ ∈ C, by definition z =
∑t

i=1 λix
i − x̄

for some x1, . . . ,xt ∈ C and λ1, . . . , λt ∈ R with
∑t

i=1 λi = 1. Then z =
∑t

i=1 λi(x
i − x̄) ∈

span (C − C), this proves aff(C)− x̄ ⊆ span (C − C).

Remark Notice that aff(C) = aff(conv(C)) since C ⊆ conv(C) ⊆ aff(C). Therefore, Exercise 2.5

implies that dim(span (C − C)) = dim(aff(C)) = dim(conv(C)).

� Exercise 2.6 Let X ⊆ Rd. Show that X is a hyperplane if and only if X is an affine set of

dimension d− 1. [Recall that a hyperplane is a set of the form
{
x ∈ Rd : 〈a,x〉 = δ

}
.]

�

Proof Suppose X is an affine set with a dimension of d − 1. By definition, such a set X

contains d affinely independent points and no more. Consequently, there exists a distinct set of

d affinely independent points, denoted X ′, for which aff(X ′) = X. By Theorem 2.2.6 discussed

in our class concerning the characterization of affine subspaces, we can identify a matrix A

belonging to R(d−(d−1))×d = R1×d and a scalar b. With these, the set X can be expressed as

X =
{
x ∈ Rd : Ax = b

}
, indicating that X represents a hyperplane. The inverse argument

can be derived similarly from the aforementioned theorem.

� Exercise 2.7 Let X ⊆ Rd be a set of d + 1 affinely independent points. Show that

int (conv(X)) 6= ∅.

�

Proof Hint: One can construct a point x ∈ conv(X) (consider choosing some λ ∈ (0, 1)d+1),

and prove that x ∈ int (conv(X)) .

� Exercise 2.8 Let X ⊆ Rd, and let y ∈ conv (X). Suppose H is a halfspace such that y ∈ H.

Prove that H ∩X 6= ∅.

Proof Consider the set H = {x : 〈a,x〉 ≤ δ}, where a ∈ Rd and δ > 0. Given that

y ∈ conv(X), it follows that y =
∑k

i=1 λix
i, with xi ∈ X, λi ≥ 0 for i = 1, . . . , k, and

9



2.2 Exercises

�

∑k
i=1 λi = 1. Assume, for the sake of contradiction, that H ∩X = ∅. In this case, 〈a,xi〉 > δ

for all i ∈ {1, . . . , k}. However, this leads to 〈a,y〉 > δ, which is a contradiction.

� Exercise 2.9 Let X ⊆ Rd be a compact set (not necessarily convex). Then conv(X) is

compact.

�

Proof By Theorem 2.2.14, every x ∈ conv(X) is the convex combination of some d + 1

points in X. Define the following function f : Rd × . . .× Rd︸ ︷︷ ︸
d+1 times

×Rd+1 → Rd as follows:

f
(
y1, . . . ,yd+1,λ

)
= λ1y

1 + . . .+ λd+1y
d+1.

It is easily verified that f is a continuous function (each coordinate of f(·) is a bilinear quadratic

function of the input). We now observe that conv(X) is the image of X × . . .×X︸ ︷︷ ︸
d+1 times

×∆d+1 under

f , where

∆d+1 :=
{
λ ∈ Rd+1

+ : λ1 + . . .+ λd+1 = 1
}
.

Since X and ∆d+1 are compact sets, we obtain the result by applying Theorem 1.3.15.

10
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3.1 Review

Each of the following statements can be used as the definition of relative interior.

Theorem 3.1 (Equivalent definitions of relative interior)

♥

Let C ⊆ Rd be a convex set and x ∈ C. The following are equivalent.

(i) There exists ε > 0 such that B(x, ε) ∩ aff (C) ⊆ C.

(ii) There exists ε > 0 such that ∀y ∈ aff (C) ,x + ε
(

y−x
‖y−x‖

)
∈ C.

(iii) ∀y ∈ aff (C) , ∃εy > 0 such that x + εy(y − x) ∈ C.

�

Proof [Proof Sketch] The equivalence between (i) and (ii) is straightforward, and it is clear

from the definition that (ii) implies (iii), so here we discuss the derivation of (ii) from (iii). The

key of the proof lies in noting that, when we consider any sequence {yi}i∈N within a compact

set aff(C)∩bd(B(x, 1)), there must exist a convergent subsequence. This observation provides

a unified positive ε∗ in (ii).

Figure 3.1: Relative interior of a convex set in R3.



3.2 Revisit Carathéodory’s theorem

Example 3.1 Let X, Y ⊆ Rd. X ⊆ Y ; relint(X) ⊆ relint(Y ).

�Proof An example is provided in Figure 3.2.

x

y

X

Y

Figure 3.2: X = {(x, y) : x ∈ [−1, 1], y = 0}, Y = {(x, y) : x ∈ [−1, 1], y ∈ [0, 2]}, then X ⊆ Y
but relint(X) ∩ relint(Y ) = ∅.

3.2 Revisit Carathéodory’s theorem

Lemma 3.1

♥

Let X ⊆ Rd. Suppose H is a halfspace such that X ⊆ H. Prove that

conv (H= ∩X) = H= ∩ conv (X) ,

where H= is the hyperplane associated with H.

Proof Consider a half-space H defined by H = {x ∈ Rd : 〈a,x〉 ≤ δ}, where a ∈ Rd and

δ > 0. Let H= be the boundary of H, defined by H= = {x : 〈a,x〉 = δ}.
Given any point x in the intersection H= ∩ conv(X), we can write x as a convex combination

of points in X: x =
∑k

i=1 λix
i, where xi ∈ X, λi ≥ 0 for i = 1, . . . , k, and

∑k
i=1 λi = 1. Then

we have:
k∑
i=1

λi(〈a,xi〉 − δ) = 0.

Since λi(〈a,xi〉− δ) ≤ 0 for all i, each λi must either be zero, or 〈a,xi〉 = δ. Therefore, any xi

with λi 6= 0 must lie in H=. Hence, x belongs to conv(H= ∩X).

12
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�

To show the converse, for any x in conv(H= ∩ X), we can similarly express x as a convex

combination of points in H= ∩X. This implies that x is in both H= and conv(X), confirming

that x ∈ H= ∩ conv(X).

Apply Lemma 3.1, we can provide an alternate proof of the Carathéodory’s theorem (Rock-

afellar 1970).

Theorem 3.2 (Carathéodory’s theorem (convex version))

♥

Let X ⊆ Rd and x ∈ conv (X). Then x is a convex combination of at most d + 1 points of

X.

�

Proof

Base Case: For d = 1, the statement can be directly verified.

Inductive Step: Assume the statement holds for dimensions smaller than d. Let x ∈ conv(X).

By definition, distinct vectors x1, . . . ,xk exist, such that x ∈ conv({x1, . . . ,xk}) := C.

Case 1: If x ∈ relbd(C), then consider H=, a supporting hyperplane of C that passes through

x. It follows that

x ∈ H= ∩ C = H= ∩ conv({x1, . . . ,xk}) 3.1
= conv(H= ∩ {x1, . . . ,xk}).

Because H= is (d− 1)-dimensional, the induction hypothesis implies that x is a convex com-

bination of at most d vectors from H= ∩ {x1, . . . ,xk}, hence of at most d points from X.

Case 2: If x ∈ relint(C), note that there exists some i ∈ {1, . . . , k} such that x 6= xi. Let

y ∈ {xi + λ(x − xi) : λ > 0} ∩ relbd(C). Hence, x is a convex combination of at most d + 1

points from X, as x can be expressed as a convex combination of y and xi, and y itself is a

convex combination of at most d points from X.

3.3 Exercises

� Exercise 3.1 Prove that the relative interior of a nonempty convex set is nonempty.

�Proof An analogy of Exercise 2.7.

Alternating projection algorithm

Given two closed convex sets C and D in Rn, the alternating projection method seeks to find

a point in the intersection of these sets by iteratively projecting onto each set. The process is

initiated with any point x0 ∈ C. In each iteration of the algorithm, the point is first projected

13
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onto D followed by a projection onto C. This yields sequences xk and yk given by:

yk = ProjD(xk), xk+1 = ProjC(yk), k ∈ N. (3.1)

Algorithm 1 Alternating projection algorithm

Require: Closed convex sets C,D ⊆ Rn, initial point x0 ∈ C
1: for k = 0, 1, 2, . . . do
2: yk ← ProjD(xk)
3: xk+1 ← ProjC(yk)
4: end for

Figure 3.3: Alternating projections algorithm on two closed convex sets with nonempty intersec-
tion.

14



3.4 Linear separability of boolean functions

� Exercise 3.2 Let C,D ⊆ Rd be nonempty closed convex sets with C ∩D 6= ∅. Show that

the alternating projection algorithm starts at any x0 ∈ C converges to a point x∗ ∈ C ∩D.

�

Proof Consider any x̄ ∈ C ∩D. We first notice that ∀n ∈ N, the following holds:

〈xn − yn, z− yn〉 ≤ 0, ∀z ∈ D. (3.2)

From this, we deduce:

‖xn − x̄‖2
2 = ‖xn − yn + yn − x̄‖2

2

= ‖xn − yn‖2
2 + ‖yn − x̄‖2

2 + 2〈xn − yn,yn − x̄〉
≥ ‖xn − yn‖2

2 + ‖yn − x̄‖2
2 ,

given that x̄ lies in C ∩ D and based on the inequality in (3.2). Rearranging the terms, we

have:

‖yn − x̄‖2
2 ≤ ‖x

n − x̄‖2
2 − ‖x

n − yn‖2
2 ≤ ‖x

n − x̄‖2
2 (3.3)

and subsequently:∥∥xn+1 − x̄
∥∥2

2
≤ ‖yn − x̄‖2

2 −
∥∥xn+1 − yn

∥∥2

2
≤ ‖yn − x̄‖2

2 ≤ ‖x
n − x̄‖2

2 . (3.4)

By (3.4) we know the sequence {‖xn − x̄‖2}n∈N is bounded in Rd by ‖x0 − x̄‖2, ensuring the

existence of a convergent subsequence {xni}i∈N to a point x∗ in Rd, with x∗ ∈ C since C is

closed. A similar argument assures the existence of a convergent subsequence {ynj}j∈N that

converges to a point y∗ in D. Our goal is to show that x∗ equals y∗. Given the inequality

(3.3), the sequence {‖x0 − x̄‖2 , ‖y0 − x̄‖2 , ‖x1 − x̄‖2 , . . .} is monotone decreasing and lower

bounded, thus a convergent sequence. As a result, the norm difference ‖yn − xn‖2 → 0 as

n→ +∞, which completes the proof.

3.4 Linear separability of boolean functions

Consider any finite set F = {x1, . . . ,xt} ⊆ Rd with t ≥ d + 1, we say a subset X ⊆ F is

linearly separable if there exists some a ∈ Rd, δ ∈ R such that X ⊆ H≤(a, δ) and Xc ⊆ H>(a, δ),

where Xc := F\X is the complement of X in F . Let Kd = {0, 1}d be the set of vertices of a

d-dimensional hypercube.

� Exercise 3.3 Show that a subset X ⊆ F is linearly separable ⇐⇒ conv(X)∩conv(Xc) = ∅.

�Proof By definition.

15



3.4 Linear separability of boolean functions

Lemma 3.2 (Linearly separable sets)

♥

Consider any finite subset F = {x1, ...,xt} ⊆ Rd with t ≥ d + 1, then there are at most

2
∑d

i=0

(
t−1
i

)
linearly separable subsets. The equality could be achieved if ∀S ⊆ F with

|S| ≤ d+ 1, S is affinely independent.

�

Proof The number of linearly separable subsets of F is equal to the cardinality of the

following set:

Ω = {(a, b) ∈ Rd+1 : (sgn(〈a,x1〉 − b), ..., sgn(〈a,x1〉 − b))}.

By Lemma 3.3 in Anthony and Bartlett 1999,

|Ω| ≤ 2
d∑
i=0

(
t− 1

i

)
,

and the equality is achieved if any d+ 1 points of {(x1,−1), ..., (xt,−1)} are linearly indepen-

dent, that is, any d+ 1 points of F is affinely independent.

� Exercise 3.4 Let Sd be the collection of all the linearly separable sets in Kd, prove that

|Sd| ≤ 2d
2+1/d!.

�

Proof By a direct application of Lemma 3.2, we have:

|Sd| ≤ 2
d∑
i=0

(
2d − 1

i

)
≤ 2d

2+1

d!
.

� Exercise 3.5 Let U =
{

x ∈ {0, 1}d :
∑d

i=1 xi is even
}
⊆ Kd. Prove that U is linear separable

⇐⇒ |U | ≤ 1.

�

Proof [Proof Sketch] For |U | ≥ 2, take any two distinct points within U , then construct two

points in U c that share the same midpoint.

16



Recitation 4 September 22, 2023

4.1 Review

Proposition 4.1 (Equivalent definition of a face)

♠

Let C ⊆ Rd be a convex set. Then a convex subset F ⊆ C is a face if and only if ∀z ∈ F ,

z = λx1 + (1− λ)x2 for some x1,x2 ∈ C and λ ∈ (0, 1) implies x1,x2 ∈ F .

�

Proof (⇐=) For this direction, the case is trivial by setting λ = 1
2
.

( =⇒ ) Let x1,x2 ∈ C and λ ∈ (0, 1) be given, such that z = λx1 +(1−λ)x2 ∈ F . Without loss

of generality, assume x1 ∈ C\F . If z1 = x1+z
2
∈ F , it would lead to a contradiction. Hence, we

can iteratively construct a sequence zk = zk−1+z
2
∈ C\F for k ≥ 1.

Now, assume that for some λ′ ∈ (λ, 1), y = λ′x1 + (1− λ′)x2 ∈ F . By the convexity of F , the

line segment connecting y and z should be entirely in F , which would imply that it contains

zk for some k ≥ 1. Therefore, {λ′x1 + (1− λ′)x2 : λ′ ∈ (λ, 1)} ⊆ C\F .

However, consider

z =
λ1x

1 + (1− λ1)x2

2
+
λ2x

1 + (1− λ2)x2

2
∈ F,

where λ1 = λ− ε and λ2 = λ + ε, with ε = 1
2

min{λ, 1− λ}. This leads to a contradiction as

the second vector is not included in F .

z ∈ F x2yx1 /∈ F z1 z2

Example 4.1 C ⊆ Rd is a closed convex set ; every face of C is an exposed face.

�Proof An example is provided in Figure 4.1.

Example 4.2 X ⊆ Rd is convex ; every face of X is a closed set.

�Proof Let X be any open convex sets in Rd, then a trivial face is X itself.



4.2 Exercises

(0, 1)

(0, 0)
x

y

Figure 4.1: In R2, let X = conv ({(−2, 0), (0, 0), (0, 2), (−2, 2)}), Y = {(x, y) : x2 +(y−1)2 ≤ 1},
then X ∪ Y has a face {(0, 0)} which is not an exposed face.

Definition 4.1 (Dual sets)

♣

Let X ⊆ Rd be any set.

1. The polar of X is defined as X◦ =
{
y ∈ Rd : 〈y,x〉 ≤ 1,∀x ∈ X

}
.

2. The polar cone of X is defined as X• =
{
y ∈ Rd : 〈y,x〉 ≤ 0,∀x ∈ X

}
.

3. The dual cone of X is defined as X∗ =
{
y ∈ Rd : 〈y,x〉 ≥ 0,∀x ∈ X

}
.

Remark X• = −X∗.

Definition 4.2 (Orthogonal complement)

♣

Let X ⊆ Rd be a linear subspace. We define X⊥ := {y ∈ Rd : 〈y,x〉 = 0, ∀x ∈ X} as the

orthogonal complement of X.

4.2 Exercises

� Exercise 4.1 Let X ⊆ Rd be a convex cone, prove that X◦ = X•.

�

Proof It’s direct to check that X• ⊆ X◦. For the reverse inclusion, consider an arbitrary

vector y ∈ X◦. Assume, for the sake of contradiction, that 〈y,x〉 > 0 for some x ∈ X. Then,

we have

〈y, 2

〈y,x〉
x〉 = 2 > 1,

which is incompatible with y ∈ X◦, thereby establishing the desired inclusion.
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Remark Similarly, it can be shown that cone(X)◦ = X• for any set X ⊆ Rd.

� Exercise 4.2 Let X ⊆ Rd be a linear subspace, prove that X◦ = X⊥.

�

Proof [Proof sketch] Similar to the proof of Exercise 4.1. ∀y ∈ X◦, if 〈y,x〉 6= 0 for some

x ∈ X, then 〈y, 2
〈y,x〉x〉 = 2 > 1 contradicts with y ∈ X◦.

� Exercise 4.3 Let X ⊆ Rd be any set, prove that (X•)• = cl(cone(X)).

�

Proof We first establish that X• is a convex cone. Given arbitrary vectors a,b ∈ X• and

scalars λ, γ ≥ 0, for every vector x ∈ X, we have

〈λa + γb,x〉 = λ〈a,x〉+ γ〈b,x〉 ≤ 0.

This implies λa + γb ∈ X•, establishing that X• is a convex cone.

Consequently, we can deduce the following:

(X•)• = (X•)◦ (4.1)

= (cone(X)◦)◦ (4.2)

= cl(conv(cone(X) ∪ {0})) (4.3)

= cl(cone(X)),

where Equation (4.1) is a result of Exercise 4.1, Equation (4.2) follows from Remark 4.2, and

Equation (4.3) is corroborated by Proposition 2.4.9 (2) in the Basu 2023.

� Exercise 4.4 Let A ∈ Rm×d,b ∈ Rm. Consider the polyhedron P = {x ∈ Rd : Ax ≤ b}.
Show that

rec(P ) = {x ∈ Rd : Ax ≤ 0}, lin(P ) = {x ∈ Rd : Ax = 0}.

Proof ∀w ∈ {x ∈ Rd : Ax ≤ 0}. For any λ ≥ 0 and x ∈ P ,

A(x + λw) = Ax + λAw ≤ b + λ0 = b,

so w ∈ rec(P ). This proves {x ∈ Rd : Ax ≤ 0} ⊆ rec(P ).

To show reverse inclusion, ∀y /∈ {x ∈ Rd : Ax ≤ 0}, there exists i ∈ {1, . . . ,m} such that

α = (Ay)i > 0.

Suppose that x ∈ P , and let β = (Ax)i. Consider λ = (bi+1−β)/α, then λ > 0 since β ≤ bi.
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�

Therefore,

(A(x + λy))i = (Ax)i + λ(Ay)i

= β + λα

= β + (bi + 1− β)

= bi + 1 > bi,

so x + λy /∈ P , thus y /∈ rec(P ).

To show lin(P ) = {x ∈ Rd : Ax = 0}, by definition of lineality space,

lin(P ) = rec(P ) ∩ −rec(P ) = {x ∈ Rd : Ax ≤ 0, Ax ≥ 0} = {x ∈ Rd : Ax = 0}.

� Exercise 4.5 Let A ∈ Rm×d,b ∈ Rm. Consider the polyhedron P = {x ∈ Rd : Ax ≤ b}.
Show that P is bounded if and only if cone({a1, . . . , am}) = Rd, where ai is the ith row of A.

�

Proof Notice that P is closed and convex since P is the intersection of halfspaces, then

Theorem 2.4.21 in Basu 2023 yields that

P is bounded ⇐⇒ rec(P ) = {0},

so we just need to show

rec(P ) = {0} ⇐⇒ cone({a1, . . . , am}) = Rd.

Let X = {a1, . . . , am}, by Exercise 4.3, we have

(X•)• = cl(cone(X)) = cone(X),

where the second equality follows from Proposition 2.2.15 in Basu 2023, and one can easily

derive that

(X•)• = Rd ⇐⇒ X• = {0}.

Therefore, we just need to show

rec(P ) = {0} ⇐⇒ X• = {0}.

Observe that rec(P ) = X• since Exercise 4.4 shows rec(P ) = {x ∈ Rd : Ax ≤ 0} = {x ∈ Rd :

〈ai,x〉 ≤ 0, i = 1, . . . ,m}, this completes the proof.

� Exercise 4.6 Let C ⊆ Rd be a convex set and let X ⊆ C be nonempty and convex. Let F

be any face of C such that relint(X) ∩ F 6= ∅, then X ⊆ F .
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�

Proof Consider any x ∈ relint(X) ∩ F and let y ∈ X. Note that 2x − y ∈ aff(X) follows

directly from the fact that both x and y are elements of X, and 2 + (−1) = 1. Given that

x ∈ relint(X), we can find some ε > 0 such that z = x + ε((2x− y)− x) is also an element of

X. Hence, we can express x as

x =
1

1 + ε
z +

ε

1 + ε
y,

confirming that y ∈ F since F is a face of X. This establishes that X ⊆ F .

Corollary 4.1 (Face of a closed convex set is closed)

♥Let C ⊆ Rd be a nonempty, closed, convex set. Let F be any face of C, then F is closed.

�

Proof If F = ∅, then F is closed, so we suppose F 6= ∅ now. Consider X = C∩clF = clF ,

then Exercise 4.6 implies that clF ⊆ F , which proves that F is closed.

Corollary 4.2 (Proper face is a subset of relative boundary)

♥

Let C ⊆ Rd be a nonempty, closed, convex set. Let F be a proper face of C, then F ⊆
relbd(C).

�

Proof Suppose relint(C) ∩ F 6= ∅, then by Exercise 4.6 we have F ⊆ C, which contradicts

the fact that F is a proper face of C.

� Exercise 4.7 Show that if D is a closed convex cone, then any face of D is a closed convex

cone.

�

Proof Let F ⊆ D be a face. Let x ∈ F and µ > 1, then

x =
1

µ
(µx) +

µ− 1

µ
0,

so µx, 0 ∈ D since F is a face. Now take any λ ∈ (0, 1], then

λx = λ x︸︷︷︸
∈F

+(1− λ) 0︸︷︷︸
∈F

∈ F

by convexity, and Corollary 4.1 yields that F is closed, which completes the proof.
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5.1 Polyhedra and linear programming

In this section, we consider the linear programming problem

minimize cTx

subject to Ax = b

x ≥ 0,

(5.1)

for some A ∈ Rm×d, b ∈ Rm, c ∈ Rd, and we say P := {x ∈ Rd : Ax = b, x ≥ 0} is a polyhedron

in standard form.

� Exercise 5.1 Let C ⊆ Rd be a compact, convex set. Let f : Rd → R be a linear function

given by f(x) = 〈c,x〉 for some c ∈ Rd. Show that there exists an extreme point v ∈ C such

that f(v) ≤ f(x) for every x ∈ C.

�

Proof By definition, f is a continuous function. Applying the Weierstrass theorem, we

conclude that there exists a point u ∈ C such that f(u) ≤ f(x) for all x ∈ C. Invoking the

Krein-Milman theorem due to the compactness and convexity of C, we can express C as the

convex hull of its extreme points, i.e., C = conv(ext(C)). Therefore, there exist vi ∈ ext(C)

and λi ≥ 0 (with
∑k

i=1 λi = 1) such that u =
∑k

i=1 λiv
i. It follows that

〈c,u〉 =
k∑
i=1

λi〈c,vi〉 ≥ 〈c,u〉.

Thus, the inequality holds with equality, implying that 〈c,vi〉 = 〈c,u〉 for each vi.

� Exercise 5.2 Let C ⊆ Rd be a nonempty closed convex set. Then C has at least one extreme

point if and only if C is pointed.

Proof Let x be an extreme point of C. Suppose C is not pointed, then for any r ∈ lin(C)\{0},
notice that x + r, x− r ∈ C and 1

2
((x + r) + (x− r)) = x, contradicting that x is an extreme

point.

Conversely, we prove by induction on the dimension of the space to show that if C does not

contain a line, then it must have an extreme point. It is trivial for the case when d = 1, so

assume it is true for d−1 with d ≥ 2. Then for any nonempty closed convex set C ⊆ Rd, there

must exist points x ∈ C and y /∈ C since lin(C) = {0}. The line segment connecting x and y



5.1 Polyhedra and linear programming

�

intersects the relative boundary of C at some point x̄ (see Figure 5.1). Consider a supporting

hyperplane H of C passing through x̄, then C ∩H lies in a (d− 1)-dimensional space and does

not contain a line. Hence, by induction hypothesis, C ∩H must have an extreme point, and

this extreme point must also be an extreme point of C (Exercise: why?).

H

Cx

y

x̄

An extreme point of C ∩H

Figure 5.1: Illustration of the proof in Exercise 5.2

Corollary 5.1

♥Every nonempty polyhedron P = {x ∈ Rd : Ax = b, x ≥ 0} has at least one extreme point.

�

Proof We just need to show that P is pointed (which is direct since P ⊆ Rd
+, but as an

example to translate a polyhedron in standard form to a regular form), observe that

P = {x ∈ Rd : Ax = b, x ≥ 0} =

x ∈ Rd :

 A

−A
−I

x ≤

 b

−b

0


 ,

then by Exercise 2 in Section 4,

lin(P ) =

x ∈ Rd :

 A

−A
−I

x = 0

 = {0}.

� Exercise 5.3 If the linear programming problem 5.1 has a minimizer, then some extreme

point of P = {x ∈ Rd : Ax = b, x ≥ 0} is a minimizer.

Proof Let x∗ be a minimizer of cTx over P = {x ∈ Rd : Ax = b, x ≥ 0}. Define
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�

Q = {x ∈ Rd : Ax = b, cTx = cTx∗, x ≥ 0} =

{
x ∈ Rd :

[
A

cT

]
x =

[
b

cTx∗

]
, x ≥ 0

}
, which

is a polyhedron in standard form as well. Therefore, by Corollary 5.1, Q must have an extreme

point x̄.

We claim that x̄ is an extreme point of P as well. Suppose there exists y, z ∈ P\{x̄} such

that 1
2
(y + z) = x̄. If both of them are in Q\{x̄}, then we are done since x̄ is an extreme

point of Q, so this case is impossible. If at least one of them is in P\Q, say y, then there is a

contradiction since
〈
c, 1

2
(y + z)

〉
= 1

2
(〈c,y〉+ 〈c, z〉) < 〈c,x∗〉 but 〈c, x̄〉 = 〈c,x∗〉. Thus, x̄ is

an extreme point of P and satisfies cTx̄ = cTx∗, which completes the proof.

� Exercise 5.4 Let X ⊆ Rd be a finite set, and let c ∈ Rd. Show that max{cTx : x ∈ X} =

max{cTx : x ∈ conv(X)}.

�

Proof To prove this statement, we first note that X ⊆ conv(X), which directly implies that

max{cTx : x ∈ X} ≤ max{cTx : x ∈ conv(X)}. Thus, it is sufficient to show max{cTx : x ∈
X} ≥ max{cTx : x ∈ conv(X)}.
Given that X is a finite set, we deduce conv(X) is a polytope based on the Minkowski-Weyl

theorem. Consequently, conv(X) is compact. Then the Weierstrass theorem yields that there

exists a vector x∗ ∈ conv(X) such that

cTx∗ = max{cTx : x ∈ conv(X)}.

Since x∗ ∈ conv(X), it can be expressed as a convex combination of vectors x1,x2, . . . ,xt ∈ X,

with convex coefficients λ1, λ2, . . . , λt ≥ 0 that sum to 1. Therefore, we have

max{cTx : x ∈ conv(X)} = cTx∗

= cT

(
t∑

j=1

λjx
j

)

=
t∑

j=1

λjc
Txj

≤
t∑

j=1

λj max{cTx : x ∈ X}

= max{cTx : x ∈ X}.
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5.2 Exercises

� Exercise 5.5 Let A ∈ Rm×d,b ∈ Rm. Consider the polyhedron P = {x ∈ Rd : Ax ≤ b}.
Suppose there is some x̄ ∈ Rd such that Ax̄ < b, show that dim(P ) = d.

�

Proof For any i ∈ {1, . . . , d}, there exists εi > 0 such that A(x̄ + εie
i) ≤ b, where ei is the

ith standard unit vector. Then {x̄, x̄ + ε1e
1, . . . , x̄ + εde

d} is a set of d+ 1 affinely independent

points in P , so dim(P ) = d.

� Exercise 5.6 Let P1, P2 be two polytopes in Rd. Show that P1 + P2 is a polytope.

Proof By Minkowski-Weyl theorem, P1 = conv ({u1, . . . ,um}) , P2 = conv ({v1, . . . ,vn}) for

some ui,vj ∈ Rd. To prove P1 + P2 is a polytope, we prove that

P1 + P2 = conv
(
{ui + vj}(i,j)∈{1,...,m}×{1,...,n}

)
.

∀x ∈ P1+P2, x = u+v for some u ∈ P1,v ∈ P2. Then by convexity, there exist some αi, βj ≥ 0

with
∑m

i=1 αi = 1,
∑n

j=1 βj = 1 such that u =
∑m

i=1 αiu
i, v =

∑n
j=1 βjv

j. Therefore,

x = u + v =
m∑
i=1

αiu
i +

n∑
j=1

βjv
j

=
m∑
i=1

αiu
i

n∑
j=1

βj︸ ︷︷ ︸
=1

+
m∑
i=1

αi︸ ︷︷ ︸
=1

n∑
j=1

βjv
j

=
m∑
i=1

(
αiu

i

n∑
j=1

βj + αi

n∑
j=1

βvj

)

=
m∑
i=1

n∑
j=1

αiβj
(
ui + vj

)
.

Observe that
∑m

i=1

∑n
j=1 αiβj =

∑m
i=1 αi

∑n
j=1 βj = 1 with αiβj ≥ 0, then x is a convex

combination of points in {ui+vj}(i,j)∈{1,...,m}×{1,...,n}, so x ∈ conv
(
{ui + vj}(i,j)∈{1,...,m}×{1,...,n}

)
.

To show the reverse inclusion, ∀x ∈ conv
(
{ui + vj}(i,j)∈{1,...,m}×{1,...,n}

)
, there exist λij ≥ 0

with
∑m

i=1

∑n
j=1 = 1 such that x =

∑m
i=1

∑n
j=1 λij (ui + vj) .
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�

Then

x =
m∑
i=1

n∑
j=1

λij
(
ui + vj

)
=

m∑
i=1

n∑
j=1

λiju
i +

n∑
j=1

m∑
i=1

λijv
j

=
m∑
i=1

αiu
i

︸ ︷︷ ︸
∈P1

+
n∑
j=1

βjv
j

︸ ︷︷ ︸
∈P2

∈ P1 + P2,

where αi =
∑n

j=1 λij ≥ 0, i = 1, . . . ,m and βj =
∑m

j=1 λij ≥ 0, j = 1, . . . , n with
m∑
i=1

αi =
n∑
j=1

βj =
m∑
i=1

n∑
j=1

λij = 1.

Minkowski-Weyl theorem implies that P1 + P2 is a polytope since it’s a convex hull of finitely

many points.
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6.1 Theorem of alternatives

Recall Definition 4.1, we give the following ‘alternative’ type result.

Theorem 6.1 (Generalized Farkas’ Lemma)

♥

Let A ∈ Rm×n, b ∈ Rm, S be a closed cone in Rn. If coneS(A) := {Ax | x ∈ S} is closed,

then exactly one of the following two statements is true:

1. There exists a vector x ∈ Rn such that Ax = b and x ∈ S.

2. There exists a vector y ∈ Rm such that ATy ∈ S∗ and bTy < 0.

�

Proof Let b ∈ Rm, then either b ∈ coneS(A) or b /∈ coneS(A). For the first case, by

definition, we have b = Ax for some x ∈ S. Thus, x is the desired vector, and the proof for

this case is complete.

For the second case, b /∈ coneS(A). Using separating hyperplane theorem, there exists a vector

y ∈ Rm and a scalar δ ∈ R such that 〈y,b〉 < δ and 〈y, As〉 = 〈ATy, s〉 ≥ δ for all s ∈ S. Note

that 0 ∈ S, which implies 0 = 〈y,0〉 ≥ δ > 〈y,b〉.
To complete the proof, assume for the sake of contradiction that there exists a vector s̃ such

that 〈ATα, s̃〉 < 0. Let λ = − |δ|+1
〈ATα,s̃〉 > 0, then this leads to 〈ATα, λs̃〉 < δ, contradicting the

inequality 〈ATα, s〉 ≥ δ for all s ∈ S.

Therefore, we must have 〈ATα, s〉 ≥ 0 for all s ∈ S, which further implies ATα ∈ S∗.

Remark In convex optimization, various kinds of constraint qualification, e.g. Slater’s condition,

are responsible for closedness of coneS(A).

Let S = Rn
+ in Theorem 6.1, we obtain the Farkas’ ‘Lemma’.

Theorem 6.2 (Farkas’ Lemma)

♥

Let A ∈ Rm×n and b ∈ Rm. Exactly one of the following is true:

1. There exists a solution x ≥ 0 such that Ax = b.

2. There exists u ∈ Rm such that uTA ≤ 0 and uTb > 0.

Let S = Rn and S∗ = {0} in Theorem 6.1, we have the following corollary.



6.2 Application to Polyhedra Complexes

Corollary 6.1 (Theorem of the alternative)

♥

Let A ∈ Rm×n and b ∈ Rm. Exactly one of the following is true:

1. There exists a vector x ∈ Rm such that Ax = b.

2. There exists a vector y ∈ Rm such that ATy = 0 and bTy 6= 0.

The following theorem is a consequence of Theorem 6.2. The underlying idea is straightfor-

ward: if the set {x ∈ Rn : Ax ≤ b} is non-empty, then no multipliers u ≥ 0 exist that yield the

contradictory inequality 0 = uTAx ≤ uTb < 0.

Theorem 6.3 (Farkas’ Lemma (Inequality Version))

♥

Let A ∈ Rm×n and b ∈ Rm. Exactly one of the following must be true:

1. There exists a vector x that satisfies Ax ≤ b.

2. There exists a vector u ≥ 0 that satisfies uTA = 0 and uTb < 0.

�

Proof Let x+
i = max{0,xi} ≥ 0, x−i = −min{0,xi} ≥ 0, i = 1, . . . , n. Then x = x+ − x−,

and

Ax ≤ b has no solution ⇐⇒ Ax + s = b, s ≥ 0 has no solution

⇐⇒ A(x+ − x−) + s = b, s,x+,x− ≥ 0 has no solution

⇐⇒
[
A −A Im

]
y = b, y ≥ 0 has no solution

⇐⇒ ∃ũ ∈ Rm such that ũT
[
A −A Im

]
≤ 0 and ũTb > 0

that is, ũTA ≤ 0, −ũTA ≤ 0, ũTIm ≤ 0, ũTb > 0, which gives ũTA = 0, ũ ≤ 0, ũTb > 0.

Then u = −ũ is the desired vector.

6.2 Application to Polyhedra Complexes

Definition 6.1

♣

A polyhedral complex P is a collection of polyhedra having the following properties:

(A) For every P, P ′ ∈ P , P ∩ P ′ is a common face of P and P ′.

(B) every face of a polyhedron in P belongs to P .

� Exercise 6.1 Let P be a finite polyhedral complex in Rn with distinct full dimensional

polyhedra {P1, . . . , Pm}, where m ∈ N+. If the union of all polyhedra in P equals Rn, then

the following statements are all true.

1.
⋃m
i=1 Pi = Rn.
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2. For any k dimensional polyhedron F ∈ P with 0 ≤ k ≤ n, there exist n− k + 1 distinct

full-dimensional polyhedra in the complex whose common intersection equals F .

3. m ≤ |P| <
(
em
n+1

)n+1
, where e ≈ 2.71828 is Euler’s number.

Proof

Suppose
⋃m
i=1 Pi 6= Rn, and consider x ∈ Rn\ (

⋃m
i=1 Pi), then there exists some ε > 0 such that

B(x, ε) ⊆ Rn\ (
⋃m
i=1 Pi) since

⋃m
i=1 Pi is closed as it is a finite union of polyhedra. This leads

to a contradiction since P covers Rn but a finite union of polyhedra with dimension at most

n− 1 cannot cover B(x, ε). This proves part 1.

For part 2., we first observe that F ∈ P if and only if F is a face of some full-dimensional

polyhedra in P . One direction follows from the definition of a polyhedral complex. For the

other direction, consider any F ∈ P . Using part 1.,

F = Rn ∩ F =

(
m⋃
i=1

Pi

)
∩ F =

m⋃
i=1

(Pi ∩ F ) .

By definition of a polyhedral complex, Pi∩F is a face of F , ∀i ∈ [m]. The above equality thus

implies that F is a finite union of some faces of F . This implies that one of these faces must

be F itself, i.e., there exists i ∈ [m] such that Pi ∩ F = F . Also, by definition F = Pi ∩ F is a

face of Pi, which proves that F is a face of some full-dimensional polyhedra in P .

Next consider any k dimensional polyhedron F ∈ P . By the argument above, there exists

i ∈ [m] such that F is a face of Pi. When k = n, the result is trivial with F = Pi. We now

show the result for k = n−1. Let 〈a,x〉 ≤ b be a facet defining inequality for Pi corresponding

to F . Let x0 be a point in the relative interior of F . Consider the sequence x0 + 1
n
a and

observe that no point in this sequence is contained in Pi. Since this is an infinite sequence,

there must exist j ∈ [m] with j 6= i such that Pj contains infinitely many points from this

sequence. Taking limits over this subsequence and using the fact that Pj is closed, we obtain

that x0 ∈ Pj. Thus, x0 ∈ Pi ∩ Pj and Pi ∩ Pj is a common face of Pi and Pj. However, since

x0 is in the relative interior of the facet F , this common face must be F . Thus we are done for

the case k = n − 1. For any k ≤ n − 2, the face F must be the intersection of n − k distinct

facets of Pi. By the argument above, each of these n− k facets is given by the intersection of

Pi with another full-dimensional polyhedron in the complex. Since these are distinct facets,

the corresponding full-dimensional polyhedra must be distinct. Including Pi, the intersection

of these n−k+1 polyhedra equals the intersection of these n−k facets of Pi, which is precisely

F . This finishes the proof of part 2.

The first inequality of 3. follows from the fact that P1, . . . , Pm ∈ P . From 2., every polyhedron

in the complex of dimension k must be the intersection of n− k + 1 distinct full-dimensional

polyhedra.
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�

Therefore,
(

m
n−k+1

)
gives an upper bound for the number of all the k dimensional polyhedra in

P . Now we can give an upper bound for |P|:

|P| ≤
n∑
k=0

(
m

n− k + 1

)
<

(
em

n+ 1

)n+1

,

where the second inequality comes from using Stirling’s approximation.
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7.1 Strongly convex functions

Definition 7.1 (Strictly convex function)

♣

A function f : Rd → R ∪ {+∞} is called strictly convex if for all x 6= y ∈ Rd and all

λ ∈ (0, 1),

f(λx + (1− λ)y) < λf(x) + (1− λ)f(y).

Definition 7.2 (Strongly convex function)

♣A function f : Rd → R ∪ {+∞} is called c-strongly convex if x 7→ f(x)− 1
2
c ‖x‖2

2 is convex.

Proposition 7.1 (Equivalent definition of strongly convex function)

♠

A function f : Rd → R ∪ {+∞} is c-strongly convex if and only if

f(λx + (1− λ)y) ≤ λf(x) + (1− λ)f(y)− 1

2
cλ(1− λ) ‖x− y‖2

2

for all x,y ∈ Rd and λ ∈ (0, 1).

�

Proof

f is c-strongly convex

⇐⇒ x 7→ f(x)− 1

2
c ‖x‖2

2 is convex

⇐⇒ f(λx + (1− λ)y)− 1

2
c ‖λx + (1− λ)y‖2

2

≤λf(x) + (1− λ)f(y)− 1

2
cλ ‖x‖2

2 −
1

2
c(1− λ) ‖y‖2

2 , ∀x,y ∈ Rd, λ ∈ (0, 1)

⇐⇒ f(λx + (1− λ)y)− 1

2
cλ2 ‖x‖2

2 − c〈λx, (1− λ)y〉 − 1

2
c(1− λ)2 ‖y‖2

2

≤λf(x) + (1− λ)f(y)− 1

2
cλ ‖x‖2

2 −
1

2
c(1− λ) ‖y‖2

2 , ∀x,y ∈ Rd, λ ∈ (0, 1)

⇐⇒ f(λx + (1− λ)y) ≤ λf(x) + (1− λ)f(y)− 1

2
cλ(1− λ) ‖x− y‖2

2 , ∀x,y ∈ Rd, λ ∈ (0, 1).

Proposition 7.2

Let f : Rd → R ∪ {+∞} be differentiable over an open set X ⊆ dom(f), and let C ⊆ X be

convex. Then the following are all equivalent.



7.1 Strongly convex functions

♠

f is c-strongly convex over C.

f(y) ≥ f(x) + 〈∇f(x),y − x〉+ 1
2
c ‖y − x‖2

2 for all x,y ∈ C.

〈∇f(y)−∇f(x),y − x〉 ≥ c ‖y − x‖2
2 for all x,y ∈ C.

�

Proof To see this, just notice that g(x) := f(x)− 1
2
c ‖x‖2

2 is a convex function, and ∇g(x) =

∇f(x)− cx. Then, by Theorem 3.2.8 for convex functions in Basu 2023, we have

f(y)− 1

2
c ‖y‖2

2 ≥ f(x)− 1

2
c ‖x‖2

2 + 〈∇f(x)− cx,y − x〉, ∀x,y ∈ C,

⇐⇒ f(y) ≥ f(x) + 〈∇f(x),y − x〉+
1

2
c ‖y‖2

2 −
1

2
c ‖x‖2

2 − c〈x,y − x〉 ∀x,y ∈ C,

⇐⇒ f(y) ≥ f(x) + 〈∇f(x),y − x〉+
1

2
c ‖y − x‖2

2 , ∀x,y ∈ C,

and

〈(∇f(y)− cy)− (∇f(x)− cx),y − x〉 ≥ 0, ∀x,y ∈ C,
⇐⇒ 〈∇f(y)−∇f(x),y − x〉 ≥ c ‖y − x‖2

2 , ∀x,y ∈ C.

Proposition 7.3

♠

Let f : Rd → R ∪ {+∞} be a twice differentiable function over an open set X ⊆ dom(f)

and let C ⊆ X be convex, then f is c-strongly convex over C if and only if ∇2f(x)− cId is

positive semidefinite for all x ∈ C.

�

Proof By definition f(x) − 1
2
c ‖x‖2

2 is convex, and notice that ∇2
(
f(x)− 1

2
c ‖x‖2

2

)
=

∇2f(x)− cI. Then part 1 in Theorem 3.2.11 in Basu 2023 gives the result.

� Exercise 7.1 Consider any convex function f : Rd → R. Fix any x̄ ∈ Rd and suppose

x∗ ∈ Rd globally minimizes

min
x∈Rd

f(x) +
c

2
‖x− x̄‖2

2

for some c > 0. Prove that c(x̄− x∗) ∈ ∂f(x∗) is a subgradient of f at x∗.

Proof Let s = c(x̄− x∗), then by definition we just need to prove that f is lower bounded

by the following linear function for all x ∈ Rd

f(x) ≥ f(x∗) + sT(x− x∗).
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�

We can prove this directly. For any x ∈ Rd, we have

f(x∗) +
c

2
‖x∗ − x̄‖2

2 ≤ f(x) +
c

2
‖x− x̄‖2

2

= f(x) +
c

2
‖x− x∗ + x∗ − x̄‖2

2

= f(x) + c(x∗ − x̄)T︸ ︷︷ ︸
sT

(x− x∗) +
c

2
‖x− x∗‖2

2 +
c

2
‖x∗ − x̄‖2

2

Cancelling the last quadratic from both sides gives a weaker result than needed:

f(x) ≥ f(x∗) + sT(x− x∗)− c

2
‖x− x∗‖2

2 , ∀x ∈ Rd. (7.1)

For any λ ∈ (0, 1], applying (7.1) at λx + (1− λ)x∗, one can obtain that

f(λx + (1− λ)x∗) ≥ f(x∗) + sT(λx + (1− λ)x∗ − x∗)− c

2
‖λx + (1− λ)x∗ − x∗‖2

2

= f(x∗) + sT(λx− λx∗)− c

2
‖λx− λx∗‖2

2

= f(x∗) + λsT(x− x∗)− λ2 c

2
‖x− x∗‖2

2 .

Using convexity of f , we can strengthen this since

f(λx + (1− λ)x∗) ≤ λf(x) + (1− λ)f(x∗),

therefore,

λf(x) + (1− λ)f(x∗) ≥ f(x∗) + λsT(x− x∗)− λ2 c

2
‖x− x∗‖2

2 ,

that is,

f(x) ≥ f(x∗) + sT(x− x∗)− λc
2
‖x− x∗‖2

2 .

Taking the limit as λ→ 0 gives the claim.
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8.1 Review

Example 8.1 A convex function f : Rn → R ∪ {+∞} may not be closed.

�

Proof Consider a convex function f : R→ R ∪ {+∞} given by

f(x) =


+∞ if x < 0

1 if x = 0

x2 if x > 0

,

then epi(f) is not closed.

The example also implies the following:

Example 8.2 A convex function f : Rn → R ∪ {+∞} may not be continuous on a compact

set C ⊆ Rn.

Below is an if and only if condition for closedness of a function’s epigraph.

Definition 8.1 (Lower semicontinuous)

♣

A function f : D → R ∪ {±∞} is called lower semicontinuous at x ∈ D if

f(x) ≤ lim inf
k→∞

f(xk)

for every sequence {xk} ⊆ D with xk → x. We say that f is lower semicontinuous if it is

lower semicontinuous at each point x in its domain D. We say that f is upper semicontinuous

if −f is lower semicontinuous.

Proposition 8.1

♠

For a function f : Rd → R ∪ {±∞}, the following are equivalent:

1. fγ = {x ∈ Rd : f(x) ≤ γ} is closed ∀γ ∈ R.

2. f is lower semicontinuous.

3. epi(f) = {(x, t) ∈ Rd × R : f(x) ≤ t} is closed.

Proof If f(x) =∞ for all x, the result trivially holds. We thus assume that f(x) <∞ for at

least one x ∈ Rd, so that epi(f) is nonempty and there exist level sets of f that are nonempty.

(i) =⇒ (ii). Assume that the level set fγ is closed for every scalar γ. Suppose to the contrary



8.1 Review

�

that

f(x̄) > lim inf
k→∞

f(xk)

for some x̄ and sequence {xk} converging to x̄, and let γ̄ be a scalar such that

f(x̄) > γ̄ > lim inf
k→∞

f(xk).

Then there exists a subsequence {xki} such that f(xki) ≤ γ̄ for all i ∈ N+, so that {xki} ⊆ fγ̄.

Since fγ̄ is closed, x̄ must also belong to fγ̄, so f(x̄) ≤ γ̄, which leads to a contradiction.

(ii) =⇒ (iii). Assume that f is lower semicontinuous over Rd, and let x̄, t̄ be the limit of a

sequence

{(xk, tk)} ⊆ epi(f).

Then we have f(xk) ≤ tk, and by taking the limit as k →∞ and by using the lower semicon-

tinuity of f at x̄, we obtain

f(x̄) ≤ lim inf
k→∞

f(xk) ≤ t̄.

Hence, (x̄, t̄) ∈ epi(f) and epi(f) is closed.

(iii) =⇒ (i). Assume that epi(f) is closed and let {xk} be a sequence that converges to some

x̄ and belongs to fγ for some γ ∈ R. Then (xk, γ) ∈ epi(f) for all k and (xk, γ) → (x̄, γ), so

since epi(f) is closed, we have (x̄, γ) ∈ epi(f). Hence, x̄ belongs to fγ, implying that this set

is closed.

Example 8.3 A strictly convex function f : Rn → R ∪ {+∞} may not be strongly convex.

�

Proof Consider f(x) = ex, then for any c > 0 there exists x̄ = log(c/2) such that

∇2
(
f(·)− c

2
‖·‖2

2

)
(x̄) = ex̄ − c = −1

2
c < 0. Therefore, f(x)− c

2
x2 is not convex.

Example 8.4 A strictly convex twice differentiable function f : Rn → R ∪ {+∞} may not

have its Hessian positive definite everywhere.

�
Proof Consider f(x) = x4. f is strictly convex, but ∇2f(0) = 0.

Example 8.5 A strictly convex function f : Rn → R ∪ {+∞} may not always have a unique

global minimizer.

�
Proof Consider f(x) = ex.
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However, for strongly convex functions, indeed there is always a unique global minimizer

(based on the result from Exercise 7.1). Moreover, we have the following:

� Exercise 8.1 For any c-strongly convex f with global minimizer x∗, show that ∀x ∈ Rd has

f(x) ≥ f(x∗) +
c

2
‖x− x∗‖2

2 .

�

Proof Let h(x) := f(x) − c
2
‖x‖2

2, which is convex by assumption. Then x∗ minimizes

f(x) = h(x) + c
2
‖x− 0‖2

2. This is precisely the shape of the problem considered in Exercise

7.1. Letting c = c, x̄ = 0, we then know for any x ∈ Rd,

h(x) ≥ h(x∗) + c(0− x∗)T(x− x∗)

= h(x∗) +
c

2
‖x∗‖2

2 +
c

2
‖x− x∗‖2

2 −
c

2
‖x‖2

2 .

Therefore,

h(x) +
c

2
‖x‖2

2︸ ︷︷ ︸
f(x)

≥ h(x∗) +
c

2
‖x∗‖2

2︸ ︷︷ ︸
f(x∗)

+
c

2
‖x− x∗‖2

2 .

Remark Exercise 7.1, Exercise 8.1, and the existence of the global minimizer did not require the

strongly convex function f to be differentiable.

8.2 Exercises

� Exercise 8.2 Theorem 3.3.14 in Basu 2023

Let N : Rd → R be a norm. Then BN(0, 1) =
{
x ∈ Rd : N(x) ≤ 1

}
is a 0-symmetric,

compact convex set with 0 in its interior. Moreover, γBN (0,1) = N .

Conversely, let B be a 0-symmetric, compact convex set containing 0 in its interior. Then

γB is a norm on Rd and B = BγB(0, 1).

Proof For the first part, since N is sublinear, it is convex (Proposition 3.3.2). By definition,

BN(0, 1) =
{
x ∈ Rd : N(x) ≤ 1

}
is a sublevel set for N , and is thus a convex set (Proposition

3.1.10). It is closed, since N is continuous by Theorem 3.2.3. Since N(x) = N(−x), this also

shows that BN(0, 1) is 0-symmetric. We now show that rec (BN(0, 1)) = {0}; this will imply

that it is compact by Theorem 2.4.22. Consider any nonzero vector r, and let N(r) = M > 0.

Then, 2
M

r = 0 + 2
M

r, but N
(

2
M

r
)

= 2. Thus, 2
M

r /∈ BN(0, 1), and so r cannot be a recession

direction for BN(0, 1).

We next verify that 0 ∈ int (BN(0, 1)). If not, then by the Supporting Hyperplane Theorem

2.4.5, there exists a ∈ Rd\{0} and δ ∈ R such that BN(0, 1) ⊆ H ≤ (a, δ) and 〈a,0〉 = δ. Thus,
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�

δ = 0. Now, since a 6= 0, N(a) > 0. Thus, N
(

a
N(a)

)
= 1 and by definition, a

N(a)
∈ BN(0, 1).

However,
〈
a, a

N(a)

〉
= ‖a‖2

N(a)
> 0 which contradicts the fact that BN(0, 1) ⊆ H ≤ (a, 0). Finally,

from Corollary 3.3.13, we obtain that N = γBN (0,1) since N is a nonnegative, sublinear function

taking value 0 at the origin.

For the second part, we know that γB is nonnegative and sublinear, and since B is com-

pact, γB(r) > 0 for all r 6= 0 by Corollary 3.3.12. Since 0 ∈ int(B), Exercise 2 from

Section 3.3.5 below implies that γC is finite valued everywhere. To confirm that γB is a

norm, all that remains to be checked is that γB(x) = γB(−x) for all x 6= 0. Suppose to the

contrary that γB(x) > γB(−x) (note that this is without loss of generality). This implies

that γB

(
1

γB(−x))
x
)
> 1. Therefore, 1

γB(−x))
x /∈ B by Theorem 3.3.11, part 2 . However,

γB

(
− 1

γB(−x))
x
)

= 1
γB(−x)

γB(−x) = 1 showing that − 1
γB(−x))

x ∈ B by Theorem 3.3.11, part

2. This contradicts the fact that B is 0-symmetric. Thus, γB is a norm on Rd. Moreover, by

Theorem 3.3.11, part 2., B =
{
x ∈ Rd : γB(x) ≤ 1

}
= BγB(0, 1).
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Recitation 9 Subdifferential Calculus

Introduction

h Support function calculus

h Subdifferential calculus

h Chain rule of directional derivatives

h Fenchel duality

9.1 Calculus of support functions

Proposition 9.1 (Calculus of support functions)

♠

The following are all true.

1. Let A,B ⊆ Rd be closed, convex sets. Show that A ⊆ B if and only if σA ≤ σB.

2. Let A,B ⊆ Rd be closed, convex sets, and λ1, λ2 ≥ 0. Then σλ1A+λ2B = λ1σA + λ2σB.

3. Let Ci, i ∈ I be a family of closed, convex sets, and let C = cl (conv (∪i∈ICi)). Then

σC = supi∈I σCi .

4. Let T : Rd → Rm be a linear transformation, and let T ∗ : Rm → Rd be its adjoint

transformation, i.e., for all x ∈ Rd and y ∈ Rm, we have 〈y, Tx〉 = 〈T ∗y,x〉 (in matrix

language, T ∗ is represented by the transpose of the matrix representing T ). Show that

for any set S, σT (S)(r) = σS (T ∗r) for all r ∈ Rm.

Proof

1. For the ‘if’ direction, we consider any r ∈ Rd, then σA(r) = supx∈A〈x, r〉 ≤
supx∈B〈x, r〉 = σB(r) since A ⊆ B. For the reverse direction, just notice that

A = CσA = {x ∈ Rd : 〈x, r〉 ≤ σA(r),∀r ∈ Rd}
⊆ {x ∈ Rd : 〈x, r〉 ≤ σB(r),∀r ∈ Rd}
= CσB = B.



9.1 Calculus of support functions

�

2. For any r ∈ Rd, we have

σλ1A+λ2B(r) = sup
x∈λ1A+λ2B

〈x, r〉

= sup
x1∈A, x2∈B

〈λ1x1 + λ2x2, r〉

= sup
x1∈A, x2∈B

(λ1〈x1, r〉+ λ2〈x2, r〉)

= λ1 sup
x1∈A
〈x1, r〉+ λ2 sup

x2∈B
〈x2, r〉

= λ1σA(r) + λ2σB(r).

3. For any r ∈ Rd, we have

σC(r) = σcl(conv(∪i∈ICi))(r) = σ∪i∈ICi(r) = sup
x∈∪i∈ICi

〈x, r〉 = sup
i∈I

sup
x∈Ci
〈x, r〉 = sup

i∈I
σCi(r).

To see second last equality, notice that ∀x ∈ ∪i∈ICi, x ∈ Ci for some i ∈ I,

then we have 〈x, r〉 ≤ supx∈Ci〈x, r〉 ≤ supi∈I supx∈Ci〈x, r〉. Thus, supx∈∪i∈ICi〈x, r〉 ≤
supi∈I supx∈Ci〈x, r〉. On the other hand, ∀i ∈ I, supx∈Ci〈x, r〉 ≤ supx∈∪i∈ICi〈x, r〉,
which implies supi∈I supx∈Ci〈x, r〉 ≤ supx∈∪i∈ICi〈x, r〉. Therefore, supx∈∪i∈ICi〈x, r〉 =

supi∈I supx∈Ci〈x, r〉.
4. For any r ∈ Rm, we have

σT (S)(r) = sup
x∈T (S)

〈r,x〉 = sup
z∈S
〈r, Tz〉 = sup

z∈S
〈T ∗r, z〉 = σS(T ∗r).

9.1.1 Subdifferential calculus

Theorem 9.1 (Subdifferential calculus)

♥

The following are all true.

1. Let f1, f2 : Rd → R be convex functions and let t1, t2 ≥ 0. Then

∂ (t1f1 + t2f2) (x) = t1∂f1(x) + t2∂f2(x) for all x ∈ Rd.

2. Let A ∈ Rm×d and b ∈ Rm and let T (x) = Ax + b be the corresponding affine map

from Rd → Rm and let g : Rm → R be a convex function. Then

∂(g ◦ T )(x) = AT∂g(Ax + b) for all x ∈ Rd.

3. Let fj : Rd → R, j ∈ J be convex functions for some (possibly infinite) index set J ,

and let f = supj∈J fj. Then

cl
(
conv

(
∪j∈J(x)∂fj(x)

))
⊆ ∂f(x),

where J(x) is the set of indices j such that fj(x) = f(x).
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9.1 Calculus of support functions

Proof

1. f1, f2 are convex functions with finite values everywhere, so f1, f2 are continuous, then

by Proposition 8.1 they are closed convex with dom(f1) = dom(f2) = Rd. Moreover,

Exercise 14 from 3.1.1 yields that both sides are closed convex sets. Therefore, by part

1 from Proposition 9.1, we have

∂(t1f1 + t2f2)(x) = t1∂f1(x) + t2∂f2(x), ∀x ∈ Rd,

9.1,1⇐⇒ σ∂(t1f1+t2f2)(x)(r) = σ(t1∂f1(x)+t2∂f2(x))(r), ∀x ∈ Rd,∀r ∈ Rd,

9.1,2⇐⇒ σ∂(t1f1+t2f2)(x)(r) = t1σ∂f1(x)(r) + t2σ∂f2(x)(r), ∀x ∈ Rd,∀r ∈ Rd,

Thm 3.4.3⇐⇒ (t1f1 + t2f2)′ (x; r) = t1f
′
1(x; r) + t2f

′
2(x; r), ∀x ∈ Rd,∀r ∈ Rd.

Then we only need to prove the last line. By definition of directional derivative, for any

x, r ∈ Rd and t1, t2 > 0, we have

(t1f1 + t2f2)′ (x; r) = lim
t→0+

(t1f1 + t2f2)(x + tr)− (t1f1 + t2f2)(x)

t

= lim
t→0+

t1f1(x + tr) + t2f2(x + tr)− (t1f1(x) + t2f2(x))

t

= lim
t→0+

t1f1(x + tr)− t1f1(x)

t
+ lim

t→0+

t2f2(x + tr)− t2f2(x)

t

= t1f
′
1(x; r) + t2f

′
2(x; r).

2. Similarly, observe that

∂(g ◦ T )(x) = AT∂g(Ax + b), ∀x ∈ Rd,

9.1,1⇐⇒ σ∂(g◦T )(x)(r) = σAT∂g(Ax+b)(r), ∀x ∈ Rd,∀r ∈ Rd,

9.1,4⇐⇒ σ∂(g◦T )(x)(r) = σ∂g(Ax+b)(Ar), ∀x ∈ Rd,∀r ∈ Rd,

Thm 3.4.3⇐⇒ (g ◦ T )′(x; r) = g′(Ax + b;Ar), ∀x ∈ Rd,∀r ∈ Rd.

Then we only need to verify that the last equality is true. By definition of directional

derivative, for any x, r ∈ Rd, we have

(g ◦ T )′(x; r) = lim
t→0+

(g ◦ T )(x + tr)− (g ◦ T )(x)

t

= lim
t→0+

g(A(x + tr) + b)− g(Ax + b)

t

= lim
t→0+

g(Ax + b + t(Ar))− g(Ax + b)

t

= g′(Ax + b;Ar).
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9.1 Calculus of support functions

�

3. Similarly, observe that

cl(conv(∪j∈J(x)∂fj(x))) ⊆ ∂f(x), ∀x ∈ Rd,

9.1,1⇐⇒ σcl(conv(∪j∈J(x)∂fj(x)))(r) ≤ σ∂f(x)(r), ∀x ∈ Rd, ∀r ∈ Rd,

9.1,3⇐⇒ sup
j∈J(x)

σ∂fj(x)(r) ≤ σ∂f(x)(r), ∀x ∈ Rd, ∀r ∈ Rd,

⇐⇒ σ∂fj(x)(r) ≤ σ∂f(x)(r), ∀x ∈ Rd,∀j ∈ J(x), ∀r ∈ Rd,

9.1,1⇐⇒ ∂fj(x) ⊆ ∂f(x), ∀x ∈ Rd,∀j ∈ J(x).

Then we only need to prove that the last inclusion is true. For any x ∈ Rd and j ∈ J(x),

we consider any s ∈ ∂fj(x), then by definition of subgradient, we have

fj(y) ≥ fj(x) + 〈s,y − x〉, ∀y ∈ Rd,

=⇒ f(y) ≥ fj(y) ≥ f(x) + 〈s,y − x〉, ∀y ∈ Rd,

=⇒ s ∈ ∂f(x).

Figure 9.1: On the boundary of dom f , there may not be any φ ∈ ∂f(x).

Figure 9.2: No sum rule in general.
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9.1 Calculus of support functions

9.1.2 Alternative proof using Fenchel duality

Theorem 9.2 (Subdifferential calculus 2)

♥

(a) For any convex functions f : Rd → R ∪ {+∞} and g : Rd → R ∪ {+∞}, show that the

partial calculus rule

∂(f + g ◦ A)(x) ⊇ ∂f(x) + A∗∂g(Ax)

holds for any x ∈ relint(dom(f)) ∩ relint(dom(g ◦ A)) (Note: In our case A∗ = AT).

(b) For any convex functions f : Rd → R ∪ {+∞} and g : Rd → R ∪ {+∞}, and linear

map A : Rd → Rd, show that the following perturbed value function is convex for any

Φ ∈ Rd:

h(u) = inf
y
{f(y) + g(Ay + u)− 〈Φ,y〉} .

(c) Show that equality holds above whenever f and g are convex with 0 ∈ relint(dom(g))−
A relint(dom(f)) (regularity condition).

(a)

�

Proof ∀Φ ∈ ∂f(x) + A∗∂g(Ax) =⇒ Φ = φ + A∗ψ, where φ ∈ ∂f(x), ψ ∈
∂g(Ax). Then, ∀y ∈ dom(g ◦ A) ∩ domf , we have

g(Ay) ≥ g(Ax) + 〈A∗ψ,y − x〉
f(y) ≥ f(x) + 〈φ,y − x〉

hence,

f(y) + g(Ay) ≥ g(Ax) + f(x) + 〈φ+ A∗ψ,y − x〉, ∀y ∈ dom(g ◦ A) ∩ domf.

Thus, by definition of subgradient, y = A∗ψ + φ ∈ ∂(f + g ◦ A)(x). This proves ∂(f +

g ◦ A)(x) ⊇ ∂f(x) + A∗∂g(Ax).

(b)

Proof ∀u1,u2 ∈ dom g − Adom f , ∀λ ∈ [0, 1]. Then ∀ε > 0, by the definition of

h(u1), h(u2), there exists y1,y2 ∈ Rd such that

f(y1) + g(Ay1 + u1)− 〈Φ,y1〉 < h(u1) + ε (9.1)

f(y2) + g(Ay2 + u2)− 〈Φ,y2〉 < h(u2) + ε (9.2)
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�

Then we consider y0 = λy1 + (1− λ)y2:

h(λu1 + (1− λ)u2)

= inf
y∈Rd
{f(y) + g(Ay + λu1 + (1− λ)u2)− 〈Φ,y〉}

≤f(y0) + g(Ay0 + λu1 + (1− λ)u2)− 〈Φ,y0〉
=f(λy1 + (1− λ)y2) + g(λ(Ay1 + u1) + (1− λ)(Ay2 + u2))− 〈Φ, λy1 + (1− λ)y2〉
≤λf(y1) + (1− λ)f(y2) + λg(Ay1 + u1) + (1− λ)g(Ay2 + u2)− 〈Φ, λy1 + (1− λ)y2〉

(9.1),(9.2)
< λh(u1) + λε+ (1− λ)h(u2) + (1− λ)ε

=λh(u1) + (1− λ)h(u2) + ε

let ε→ 0, we have

h(λu1 + (1− λ)u2) ≤ λh(u1) + (1− λ)h(u2),

which implies h(u) is convex.

(c)

Proof Consider any x ∈ dom(g ◦A) ∩ dom(f). ∀Φ ∈ ∂(f + g ◦A)(x), by definition of

subgradient we have 0 ∈ ∂(f+g◦A−〈Φ, ·〉)(x), that is, x minimizes f(y)+g(Ay)−〈Φ,y〉.
The above argument (b) yields that h(u) is convex. Also, 0 ∈ relint(dom(h)) since

0 ∈ relint(dom(g))−A relint(dom(f)) (Verify!), so −Ψ ∈ ∂h(0) exists. Then by definition

of subgradient,

h(0) ≤ h(u) + 〈Ψ,u〉. (9.3)

Recall that h(u) = infy{f(y)+g(Ay+u)−〈Φ,y〉} and x minimizes f(y)+g(Ay)−〈Φ,y〉,
hence ∀y,∀u we have,

f(x) + g(Ax)− 〈Φ,x〉︸ ︷︷ ︸
h(0)

(9.3)

≤ inf
y
{f(y) + g(Ay + u)− 〈Φ,y〉}︸ ︷︷ ︸

h(u)

+〈Ψ,u〉

≤ f(y) + g(Ay + u)− 〈Φ,y〉+ 〈Ψ,u〉 (9.4)

Take y = x in 9.4, we have

g(Ax) ≤ g(Ax + u) + 〈Ψ,u〉, ∀u,
=⇒ g(Ax + u) ≥ g(Ax) + 〈−Ψ, (Ax + u)− Ax〉, ∀u,

=⇒ g(z) ≥ g(Ax) + 〈−Ψ, z− Ax〉, ∀z.

This proves −Ψ ∈ ∂g(Ax).
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Take u = A(x− y) ∈ dom g − Adom f in 9.4, we have

f(x) + g(Ax)− 〈Φ,x〉 ≤ f(y) + g(Ax)− 〈Φ,y〉+ 〈Ψ, A(x− y)〉, ∀y
=⇒ f(x) ≤ f(y) + 〈Φ,x− y〉+ 〈A∗Ψ,x− y〉, ∀y
=⇒ f(y) ≥ f(x) + 〈Φ + A∗Ψ,y − x〉, ∀y

Therefore, by the definition of subgradient, Φ + A∗Ψ ∈ ∂f(x).

Thus,

Φ = Φ + A∗Ψ− A∗Ψ = Φ + A∗Ψ︸ ︷︷ ︸
∈∂f(x)

+A∗ (−Ψ)︸ ︷︷ ︸
∈∂g(Ax)

∈ ∂f(x) + A∗∂g(Ax),

which implies ∂(f + g ◦ A)(x) ⊆ ∂f(x) + A∗∂g(Ax), then completes the proof.

46



Recitation 10 Normal Cones

Introduction

h Normal cone examples h Normal cone calculus

10.1 Feasible cone and normal cone

Definition 10.1 (Cone of feasible directions and tanget cone)

♣

Let C ⊆ Rd be a convex set, and let x ∈ C. Define cone of feasible directions as

FC(x) = {r ∈ Rd : ∃ε > 0 such that x + εr ∈ C},

and the tanget cone of C at x as TC(x) = cl(FC(x)).

� Exercise 10.1 Let C ⊆ Rd and x ∈ C, show that FC(x) is a convex cone.

�

Proof ∀r1, r2 ∈ FC(x), by definition there exist ε1, ε2 > 0 such that x + ε1r
1,x + ε2r

2 ∈ C.

For any λ, γ ≥ 0, notice that

x +
ε1

2λ
(2λr1), x +

ε2

2γ
(2γr2) ∈ C,

so we have that 2λr1, 2γr2 ∈ FC(x). Let ε3 = min{ ε1
2λ
, ε2

2γ
}, by convexity of C one can obtain

that x + ε3(2λr1),x + ε3(2γr2) ∈ C. Again by convexity, we have

x + ε3(λr1 + γr2) =
1

2
(x + ε3(2λr1)) +

1

2
(x + ε3(2γr2)) ∈ C,

so λr1 + γr2 ∈ FC(x), which proves FC(x) is a convex cone.

Remark FC(x) may not be closed: consider C = {x ∈ R2 : ‖x‖ ≤ 1}, and let x = (−1, 0). Then

FC(x) = {r ∈ R2 : r1 > 0} ∪ {0}.

Definition 10.2 (Normal cone)

♣

Let C ⊆ Rd be a convex set, and let x ∈ C. The normal cone of C at x is

NC(x) = {r ∈ Rd : 〈r,y − x〉 ≤ 0, ∀y ∈ C}.

Proposition 10.1

♠

Let C ⊆ Rd be a convex set, and let x ∈ C. Then NC(x) = TC(x)◦, i.e., the tangent cone

and the normal cone are polars of each other.



10.2 Normal cone examples

�Proof Direct by definition.

Proposition 10.2

♠

Consider a closed, convex function g : Rd → R ∪ {+∞} and a point x̄ ∈ int(dom g), then

Tg≤g(x̄)
(x̄) = {r ∈ Rd : g′(x̄; r) ≤ 0}.

10.2 Normal cone examples

Proposition 10.3

♠

Let C ⊆ Rd be a nonempty, closed, convex set. Then the following are all true:

1. Let y ∈ Rd\C, then ProjC(y) = x if and only if y − x ∈ NC(x).

2. If x ∈ int (C), then NC(x) = {0}.
3. If x ∈ relbd (C), then {0} ( NC(x).

�

Proof

1. (=⇒): Notice that by Proposition 2.3.1 in Basu 2023,

ProjC(y) = x =⇒ 〈y − x, z− x〉 ≤ 0, ∀z ∈ C, =⇒ y − x ∈ NC(x).

(⇐=): Since y − x ∈ NC(x), by definition of normal cone,

〈y − x, z− x〉 ≤ 0, ∀z ∈ C,
=⇒ 〈y − x,y − x〉+ 〈y − x, z− y〉 ≤ 0, ∀z ∈ C,
=⇒ ‖y − x‖2 ≤ 〈y − x,y − z〉 ≤ ‖y − x‖‖y − z‖, ∀z ∈ C,
=⇒ ‖y − x‖ ≤ ‖y − z‖, ∀z ∈ C,
=⇒ x = ProjC(y).

2. ∀r ∈ NC(x), there exists ε > 0 such that x + εr ∈ C since x ∈ int (C). Then

〈r, (x + εr)− x〉 ≤ 0,

=⇒ ε〈r, r〉 ≤ 0,

=⇒ r = 0,

which implies NC(x) = {0}.
3. By Lemma 2.3.4 in Basu 2023, there exists y ∈ aff(C)\C such that ProjC(y) = x. Then

part 1 implies y − x ∈ NC(x). Therefore, {0} ( {0,y − x} ⊆ NC(x).
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10.3 Normal cone calculus

10.3 Normal cone calculus

Definition 10.3 (Indicator function)

♣

For any subset X ⊆ Rd, define

IX(x) :=

{
0 if x ∈ X

+∞ if x /∈ X
.

It’s not hard to see that IX is convex if and only if X is convex.

� Exercise 10.2 For any subset X, Y ⊆ Rd, we have IX + IY = IX∩Y .

�

Proof Let x be any point in Rd, then we have

IX(x) + IY (x) = 0 ⇐⇒ x ∈ X, x ∈ Y ⇐⇒ x ∈ X ∩ Y ⇐⇒ IX∩Y (x) = 0.

Proposition 10.4

♠Let C ⊆ Rd be a convex set, then ∂IC(x) = NC(x) for any x ∈ C.

�

Proof Consider any x ∈ C.

s ∈ ∂IC(x) ⇐⇒ IC(y) ≥ IC(x) + 〈s,y − x〉, ∀y ∈ Rd

⇐⇒

0 ≥ 0 + 〈s,y − x〉 ∀y ∈ C

+∞ ≥ 〈s,y − x〉 ∀y /∈ C

⇐⇒ 0 ≥ 〈s,y − x〉, ∀y ∈ C
⇐⇒ s ∈ NC(x).

Theorem 10.1 (Normal cone sum rule)

♥

Let C1, C2 ⊆ Rd be two convex sets. If the regularity condition relint(C1) ∩ relint(C2) 6= ∅
holds, then we have

NC1∩C2(x) = NC1(x) +NC2(x)

for any x ∈ C1 ∩ C2.

�

Proof

NC1∩C2(x)
10.4
= ∂IC1∩C2(x)

10.2
= ∂(IC1 + IC2)(x)

9.2
= ∂IC1(x) + ∂IC2(x)

10.4
= NC1(x) +NC2(x).
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10.4 Exercises

Theorem 10.2

♥

Given a closed, convex function g : Rd → R ∪ {+∞} and a point x̄ ∈ int(dom g) such that

g(x̄) > infx∈Rd g(x), then

NC(x̄) = cone(∂g(x̄)),

where C := {x ∈ Rd : g(x) ≤ g(x̄)}. Moreover, if g is differentiable, then

NC(x̄) = cone({∇g(x̄)}).

�

Proof The inclusion cone(∂g(x̄)) ⊆ NC(x̄) is straightforward. To establish the equality,

assume there exists a direction r ∈ NC(x̄)\cone(∂g(x̄)). The fact that x̄ is not a minimizer

of g implies 0 /∈ ∂g(x̄). Hence, cone({r}) ∩ cone(∂g(x̄)) = {0} and cone({r}) ∩ ∂g(x̄) =

∅. According to Problem 14 from Exercise 3.1.1, ∂g(x̄) is a compact convex set (as x̄ ∈
int(dom g)). Therefore, by Problem 1 from Exercise 2.4.4, there exist a ∈ Rd\{0}, δ ∈ R, c > 0

such that cone({r}) ⊆ H≤(a, δ) and ∂g(x̄) ⊆ H≥(a, δ + c). Notice that cone({r}) ⊆ H≤(a, δ)

implies δ ≥ 〈a,0〉 = 0, then it’s not hard to verify that cone({r}) ⊆ H≤(a, 0) and ∂(g(x̄)) ⊆
H≥(a, c). It follows that 〈a, s〉 ≥ c > 0 for all s ∈ ∂g(x̄), leading to

g′(x̄;−a) = σ∂g(x̄)(−a) = sup
s∈∂g(x̄)

〈s,−a〉 ≤ −c < 0.

Consequently, there exists a sufficiently small ε > 0 such that g(x̄− εa) < g(x̄), which implies

x̄− εa ∈ int(g(x̄)). Since r ∈ NC(x̄), it follows that −ε〈r, a〉 = 〈r, x̄− εa− x̄〉 ≤ 0, implying

〈r, a〉 ≥ 0. We claim that 〈r, a〉 6= 0, otherwise consider some ε′ > 0 small enough such that

g(x̄ − εa + ε′r) ≤ g(x̄), then 〈r, x̄ − εa + ε′r − x̄〉 = ε′ ‖r‖2
2 > 0, contradicting with the fact

that r ∈ NC(x̄).

However, 〈r, a〉 > 0 would contradict with the fact that cone({r}) ⊆ H≤(a, 0), thereby proving

that such a direction r cannot exist.

10.4 Exercises

� Exercise 10.3 Let P ⊆ Rd be a polyhedron given by P = {x ∈ Rd : Ax ≤ b}. Let

ai, i = 1, . . . ,m be the rows of A. For any x̄ ∈ P , define tight(x̄) = {i : 〈ai,x〉 = bi}. Show

that

FP (x̄) = {r ∈ Rd : 〈ai, r〉 ≤ 0 for all i ∈ tight(x̄)}.

Proof The set {r ∈ Rd : 〈ai, r〉 ≤ 0 for all i ∈ tight(x̄)} ⊆ FP (x̄), since

Case 1: i ∈ tight(x̄). For all ε > 0, 〈ai,x + εr〉 = 〈ai,x〉+ ε〈ai, r〉 ≤ 〈ai,x〉 = bi.
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�

Case 2: i /∈ tight(x̄). 〈ai,x〉 < bi, once ε > 0 is small enough, the inequality 〈ai,x + εr〉 ≤ bi

will hold.

To show the reverse direction, consider any r ∈ Rd has 〈ai, r〉 > 0 for some i ∈ tight(x̄), then

for any ε > 0 we have

〈ai, x̄ + εr〉 = 〈ai, x̄〉+ ε〈ai, r〉 > bi,

so r /∈ FP (x̄).

� Exercise 10.4 Consider the following standard form polyhedron in Rd, defined by some

A ∈ Rm×d,b ∈ Rm:

P = {x ∈ Rd : Ax = b,x ≥ 0}.

1. Prove that every x̄ ∈ P has NP (x̄) = {−(s + ATy) : (s,y) ∈ Rd × Rm, s ≥ 0, si =

0 for i ∈ I(x̄)}, where I(x̄) = {i : x̄i > 0}.
2. Prove that if −c ∈ int (NP (x̄)) for some x̄ ∈ P , then x̄ is the unique minimizer of 〈c, ·〉

over P.

�

Proof

1. For any c ∈ Rd, the function f(x) = 〈c,x〉 is convex and differentiable with ∇f(x) = c,

then

−c ∈ NP (x̄) ⇐⇒ x̄ minimizes 〈c,x〉 over P,

⇐⇒ ∃y ∈ Rm s.t. ATy ≤ c, 〈b,y〉 = 〈c, x̄〉,
⇐⇒ ∃y ∈ Rm s.t. ATy ≤ c, 〈Ax̄,y〉 = 〈c, x̄〉,
⇐⇒ ∃y ∈ Rm s.t. ATy ≤ c, xT(c− ATy) = 0,

⇐⇒ ∃y ∈ Rm, s ≥ 0 s.t. s = c− ATy, xT(c− ATy) = 0,

⇐⇒ ∃y ∈ Rm, s ≥ 0 s.t. c = s + ATy, xTs = 0,

⇐⇒ −c ∈ {− (s + ATy) : y ∈ Rm, s ≥ 0, 〈x̄, s〉 = 0}.

2. Suppose to the contrary both x̄ and x̄′ minimize the objective 〈c,x〉 but x̄ 6= x̄′. Since

c ∈ int(NP (x̄)), for small enough ε > 0, −c−ε(x̄−x̄′) ∈ NP (x̄). This implies x̄ minimizes

〈c + ε(x̄− x̄′),x〉 over P . However, this is contradicted by x̄′ ∈ P as it has

〈c + ε(x̄− x̄′), x̄′〉 = 〈c + ε(x̄− x̄′), x̄〉+ 〈c + ε(x̄− x̄′), x̄′ − x̄〉
= 〈c + ε(x̄− x̄′), x̄〉+ 〈c, x̄′〉 − 〈c, x̄〉︸ ︷︷ ︸

=0

−ε ‖x̄− x̄′‖2
2︸ ︷︷ ︸

>0

< 〈c + ε(x̄− x̄′), x̄〉.
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10.4 Exercises

� Exercise 10.5 We use Sn to denote all the symmetric n × n matrices, and all the n × n

positive semidefinite matrices will be denoted by Sn+. On the set of Sn, we use the standard

inner product tr(AB) =
∑n

i,j=1AijBij. Prove that Sn+ is a closed convex cone and self-dual.

�

Proof First we prove that Sn+ is a closed convex cone. Observe that

Sn+ = {A ∈ Sn : xTAx ≥ 0 for all x ∈ Rn}

=
⋂

x∈Rn
{A ∈ Sn : tr(xTAx) ≥ 0}

=
⋂

x∈Rn
{A ∈ Sn : tr(xxTA) ≥ 0}

=
⋂

x∈Rn
{A ∈ Sn : 〈xxT, A〉 ≥ 0}

is an intersection of closed halfspaces, which implies Sn+ is a closed convex set. To show it is a

cone, we take any A,B ∈ Sn+ and λ, γ ≥ 0, then for any x ∈ Rn we have

xT(λA+ γB)x = λ(xTAx) + γ(xTBx) ≥ 0,

so λA+ γB ∈ Sn+.

Then we prove that Sn+ is self-dual, i.e., for A,B ∈ Sn: tr(AB) ≥ 0, ∀A ∈ Sn+ ⇐⇒ B ∈ Sn+.

Suppose B /∈ Sn+, then there exists x ∈ Rn with

xTBx = tr(xxTB) < 0.

Hence the positive semidefinite matrix A = xxT satisfies tr(AB) < 0, which implies B /∈ (Sn+)∗.

Now suppose A,B ∈ Sn+. We can express A in terms of its eigenvalue decomposition as

A =
∑n

i=1 λixix
T
i , where the eigenvalues λi ≥ 0, i = 1, . . . , n. Then we have

tr(BA) = tr

(
B

n∑
i=1

λixix
T
i

)
=

n∑
i=1

λix
T
i Bxi ≥ 0.

This shows that B ∈ (Sn+)∗.

Dual of a norm cone (Boyd and Vandenberghe 2004):

� Exercise 10.6 Let ‖ · ‖ be a norm on Rn. The dual of the associated cone K = {(x, t) ∈
Rn+1 : ‖x‖ ≤ t} is the cone defined by the dual norm, i.e.,

K∗ = {(u, v) ∈ Rn+1 : ‖u‖∗ ≤ v},

where the dual norm is given by ‖u‖∗ = sup{〈u,x〉 : ‖x‖ ≤ 1}.

Proof To prove the result we need to show that

〈x,u〉+ tv ≥ 0 whenever ‖x‖ ≤ t ⇐⇒ ‖u‖∗ ≤ v.
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10.4 Exercises

�

“ =⇒ ” : Suppose to the contrary that ‖u‖∗ > v, then by the definition of the dual norm,

there exists an x with ‖x‖ ≤ 1 and 〈x,u〉 > v. Taking t = 1, we have 〈u,−x〉+ v < 0, which

leads to a contradiction.

“ ⇐= ” : Suppose ‖u‖∗ ≤ v and ‖x‖ ≤ t for some t > 0. Applying the definition of the

dual norm, and the fact that ‖−x/t‖ ≤ 1, we have 〈u,−x/t〉 ≤ ‖u‖∗ ≤ v, and therefore

〈u,x〉+ vt ≥ 0.

Second-order conditions for K-convexity (Boyd and Vandenberghe 2004):

� Exercise 10.7 Let K ⊆ Rm be a closed, convex, pointed cone, with associated generalized

inequality �K . Show that a twice differentiable function f : Rn → Rm, with convex domain,

is K-convex if and only if for all x ∈ dom f and all y ∈ Rn,

0 �K
n∑

i,j=1

∂2f(x)

∂xi∂xj
yiyj.

(Here ∂2f/∂xi∂xj ∈ Rm, with components ∂2fk/∂xi∂xj, for k = 1, . . . ,m.)

�

Proof It’s not hard to show f is K-convex if and only if 〈c, f〉 is convex for all c ∈ K∗. For

any x ∈ Rn, the Hessian of 〈c, f(x)〉 is

∇2(〈c, f(x)〉) =
n∑
k=1

ck∇2fk(x) =
n∑
k=1

ck

[
∂2fk(x)

∂xi∂xj

]
(i,j)∈[n]×[n]

.

This is positive semidefinite if and only if for all y,

yT∇2(〈c, f(x)〉)y =
n∑

i,j=1

n∑
k=1

ck
∂2fk(x)

∂xi∂xj
yiyj =

n∑
k=1

ck

(
n∑

i,j=1

∂2fk(x)

∂xi∂xj
yiyj

)
≥ 0,

which by definition of dual cone is equivalent to
n∑

i,j=1

∂2f(x)

∂xi∂xj
yiyj ∈ K.
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Appendix A Frequently Asked Homework

Problems

A.1 Homework 1

Problem A.1 Let X ⊆ Rd be a set. Then X is a linear subspace if and only if X is both a

cone and an affine subset.

�

Proof It is direct to show the forward direction. For the reverse direction, suppose X is

both a cone and an affine subset. ∀x,y ∈ X, λ, γ ∈ R, then

λx + γy = λx + γy + (1− λ− γ)0 ∈ X,

where the first equality holds since X is a cone.

Problem A.2 Let C ⊆ Rd, then span (C − C) = aff(C)− x̄ for any x̄ ∈ C.

�

Proof ∀z ∈ span (C − C), z = γ1(x1−y1)+· · ·+γt(xt−yt) for some x1, . . . ,xt,y1, . . . ,yt ∈ C
and γ1, . . . , γt ∈ R. Then z = γ1x

1+· · ·+γtxt+(−γ1)y1+· · ·+(−γt)yt+x̄−x̄ ∈ aff(C)−x̄ where

x̄ is any point in C since
∑t

i=1 γi +
∑t

i=1(−γi) + 1 = 1, this proves span (C − C) ⊆ aff(C)− x̄.

To show the reverse inclusion, ∀z ∈ aff(C)− x̄ for any x̄ ∈ C, by definition z =
∑t

i=1 λix
i − x̄

for some x1, . . . ,xt ∈ C and λ1, . . . , λt ∈ R with
∑t

i=1 λi = 1. Then z =
∑t

i=1 λi(x
i − x̄) ∈

span (C − C), this proves aff(C)− x̄ ⊆ span (C − C).

Remark Notice that aff(C) = aff(conv(C)) since C ⊆ conv(C) ⊆ aff(C). Therefore, Problem A.2

implies that dim(span (C − C)) = dim(aff(C)) = dim(conv(C)).

Problem A.3 Let a ∈ Rd and δ1 ≤ δ2. Show that the distance between the hyperplanes

H= (a, δ1) and H= (a, δ2) is given by δ2−δ1
‖a‖ . More precisely, show that

inf {‖x− y‖ : x ∈ H= (a, δ1) ,y ∈ H= (a, δ2)} =
δ2 − δ1

‖a‖

Proof ∀x ∈ H=(a, δ1), y ∈ H=(a, δ2), then by B.6 we have

δ2 − δ1 = 〈a,y − x〉 ≤ ‖a‖2 ‖y − x‖2 ,



A.2 Homework 2

�

and the equality holds if and only if y − x = λa for some λ ∈ R. Specifically, one can choose

x = δ1
‖a‖22

a, y = δ2
‖a‖22

a to achieve the equality.

A.2 Homework 2

Problem A.4 Let X ⊆ Rd be a set of d + 1 affinely independent points. Show that

int(conv(X)) 6= ∅.

�

Proof Let X = {x1, . . . ,xd+1} be affinely independent, we can consider proving a point x̄ =∑d+1
i=1 λix

i with λ = [λ1, . . . , λd+1]T ∈ int(∆d+1) is in the interior of conv(X). Specifically, one

can choose x̄ =
∑d+1

i=1
1
d+1

xi. To establish that x̄ ∈ int(conv(X)), several possible approaches

can be employed. One involves invoking Theorem 3.1 to prove that for any direction r ∈ Rd,

there exists some εr > 0 such that x̄+εrr ∈ conv(X), which is always achievable for sufficiently

small εr. Alternatively, one can directly construct a ball centered at x̄ that is fully contained

in conv(X). For example, one can consider the optimization problem with a continuous convex

objective function over a compact set: ε∗ := min{‖y − x‖2
2 : y ∈ bd(conv(X))}. I claim ε∗ > 0

since

x̄ /∈
⋃

S⊆{x1,...,xd+1}, |S|=d

aff(S) ⊇ bd(conv(X)),

then B
(
x̄, ε∗

553.665

)
⊆ conv(X).

Problem A.5 Show that relint(C) is nonempty for any nonempty convex set C ⊆ Rd.

�
Proof Suppose that dim(C) = k ∈ [0, d]∩Z. Notice that aff(C) ∼= Rk and use Problem A.4.

Problem A.6 Let X, Y ⊆ Rd, show that if X is closed convex with 0 ∈ X and Y is a linear

subspace, then (X ∩ Y )◦ = cl(X◦ + Y ⊥).

�

Proof It’s trivial to see the second set is contained in the first one. To see the reverse

inclusion, just notice that

(X ∩ Y )◦ = (X◦◦ ∩ Y ◦◦)◦ = (X◦ ∪ Y ◦)◦◦ = cl(conv(X◦ ∪ Y ⊥)) ⊆ cl(X◦ + Y ⊥).
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A.3 Homework 3

A.3 Homework 3

Problem A.7 (Farkas’ Type Results in Linear Inequalities)

Let A be a given matrix and b be a given vector. Then, the following statements hold:

1. There exists x ≥ 0 satisfying Ax ≤ b if and only if for each y ≥ 0,yTA ≥ 0⇒ yTb ≥ 0.

2. There exists x > 0 satisfying Ax = 0 if and only if for each y ∈ Rm,yTA ≥ 0⇒ yTA = 0.

3. There exists x 6= 0 satisfying x ≥ 0 and Ax = 0 if and only if there is no vector y ∈ Rm

satisfying yTA > 0.

�

Proof Here we only prove part 3..

To prove part 3., we just need to prove

∃x 6= 0, x ≥ 0 such that Ax = 0 ⇐⇒ @y ∈ Rd satisfying yTA > 0.

Consider any fixed b ∈ Rn
++, then

@y ∈ Rd satisfying yTA > 0 ⇐⇒ @y ∈ Rd such that yTA ≥ b

⇐⇒ AT(−y) ≤ −b has no solution

Thm.6.3⇐⇒ ∃x ≥ 0 such that xTAT = 0 and xT(−b) < 0

⇐⇒ ∃x ≥ 0 such that Ax = 0 and xTb > 0

⇐⇒ ∃x 6= 0, x ≥ 0 such that Ax = 0.
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Appendix B Discrete Inequalities

B.1 Young’s Inequality and the AM-GM Inequality

Theorem B.1 (Young’s Inequality)

♥

Let λ1, . . . , λm ≥ 0 such that λ1 + · · ·+ λm = 1. Then for any real numbers a1, . . . , am ≥ 0,

we have

λ1a1 + · · ·+ λmam ≥ aλ1
1 · · · aλmm .

�

Proof The inequality is trivial if there exists any i ∈ [m] such that ai = 0, so we may assume

all the ai’s are positive. Notice that f(x) = ln(x) is a concave function on (0,+∞). Therefore,

λ1 ln(a1) + · · ·+ λm ln(am) ≤ ln(λ1a1 + · · ·+ λmam),

which completes the proof since ln(x) is monotone increasing on (0,+∞).

Theorem B.2 (Weighted AM-GM inequality)

♥

Let λ1, . . . , λm ≥ 0 and λ =
∑m

i=1 λi. Then for any real numbers a1, . . . , am ≥ 0, we have

λ1a1 + · · ·+ λmam
λ

≥ λ

√
aλ1

1 · · · aλmm .

�
Proof Notice that

∑m
i=1

λi
λ

= 1, then use Theorem B.1 with λi/λ as the weights.

B.2 Generalized Finite Hölder’s Inequality

Theorem B.3 (Generalized Finite Hölder’s Inequality)

Let λ1, . . . , λm ≥ 0 such that λ1 + · · ·+λm = 1. Suppose A = (aij)m×n > 0 is an m by n real

matrix. Then, we have
m∏
i=1

(
n∑
j=1

aij

)λi

>
n∑
j=1

(
m∏
i=1

aλiij

)
,

or equivalently,

(a11 + · · ·+ a1n)λ1(a21 + · · ·+ a2n)λ2 · · · (am1 + · · ·+ amn)λm >
n∑
j=1

(
aλ1

1j a
λ2
2j · · · a

λm
mj

)
. (B.1)



B.2 Generalized Finite Hölder’s Inequality

♥

Equality holds if and only if a11 : a12 : · · · : a1n = a21 : a22 : · · · : a2n = · · · = am1 : am2 : · · · :
amn, that is, each row of A is parallel to the others.

�

Proof Let Ai =
∑n

j=1 aij for i = 1, 2, . . . ,m denote the sum of the i-th row of the matrix

A = (aij)m×n. By Theorem B.1, we have

λ1

(
a1j

A1

)
+ λ2

(
a2j

A2

)
+ · · ·λm

(
amj
Am

)
≥
(
a1j

A1

)λ1
(
a2j

A2

)λ2

· · ·
(
amj
Am

)λm
, ∀j ∈ [n].

Summing over j from 1 to n, we obtain

1 = λ1 + λ2 + · · ·+ λm ≥
n∑
j=1

(
a1j

A1

)λ1
(
a2j

A2

)λ2

· · ·
(
amj
Am

)λm
,

which implies

Aλ1
1 A

λ2
2 · · ·Aλmm ≥

n∑
j=1

aλ1
1j a

λ2
2j · · · a

λm
mj ,

and completes the proof.

Remark Take m = 2, and a1j = |xj|p, a2j = |yj|p, ∀j ∈ [n] for some p, q > 1 such that 1
p

+ 1
q

= 1

in Theorem B.3, we obtain the Finite Hölder’s Inequality:

(|x1|p + · · ·+ |xn|p)1/p(|y1|q + · · ·+ |yn|q)1/q > |x1y1|+ · · ·+ |xnyn|, (B.2)

or equivalently,

|〈x,y〉| ≤ ‖x‖p ‖y‖q (B.3)

for any x,y ∈ Rn, and equality holds if and only if |x|p and |y|q are linearly dependent, where

|x|p := [|x1|p, . . . , |xn|p]T ∈ Rn.

Remark Let λ1 = λ2 = · · · = λm = 1
m

in Theorem B.3, we obtain the following inequality:

m∏
i=1

(
n∑
j=1

amij

)
>

(
n∑
j=1

m∏
i=1

aij

)m

, (B.4)

or equivalently,

(am11 + · · ·+ am1n) · · · (amm1 + · · ·+ ammn) > (a11 · · · am1 + · · ·+ a1n · · · amn)m. (B.5)

Example B.1 Show that the following optimization problem has the minimum 5 attained at

a = 1 and b = 2:

min
1

a
+

8

b

s.t. a2 + b2 = 5

a, b ≥ 0.
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B.3 Cauchy-Schwarz Inequality

�

Proof By (B.5), we have(
1

a
+

8

b

)(
1

a
+

8

b

)
(a2 + b2)︸ ︷︷ ︸

5

≥
(
1 + 3
√

8× 8
)3

= 53,

hence
1

a
+

8

b
≥
√

53

5
= 5.

The equality holds when [ 1
a
, a2] and [8

b
, b2] are linearly dependent, which implies that a = 1

and b = 2.

B.3 Cauchy-Schwarz Inequality

Take p = q = 2 in (B.3), we obtain the Cauchy-Schwarz Inequality:

|〈x,y〉| ≤ ‖x‖2 ‖y‖2 , (B.6)

for any x,y ∈ Rn, and equality holds if and only if x and y are linearly dependent.

Alternatively, the Cauchy-Schwarz inequality can be derived by noting that ϕ(t) := 〈x +

ty,x + ty〉 ≥ 0 for any x,y ∈ Rn and t ∈ R, or noticing that
∥∥∥x− 〈x, y

‖y‖2
〉 y
‖y‖2

∥∥∥
2
≥ 0.

B.4 Minkowski’s Inequality

Minkowski’s Inequality establishes that ‖ · ‖p is a norm in Rn for p ≥ 1, and can be derived

by Finite Hölder’s Inequality (B.3).

Theorem B.4 (Minkowski’s Inequality)

♥

Let p ∈ (1,+∞). Then, for any x,y ∈ Rn, we have

‖x + y‖p ≤ ‖x‖p + ‖y‖p , (B.7)

the equality holds if and only if x = cy for some c ≥ 0 or one of the vectors is 0.
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B.5 Power Mean Inequality

�

Proof

‖x + y‖pp =
n∑
i=1

|xi + yi|p

=
n∑
i=1

|xi + yi||xi + yi|p−1

≤
n∑
i=1

|xi||xi + yi|p−1 +
n∑
i=1

|yi||xi + yi|p−1

(B.3)

≤

(
n∑
i=1

|xi|p
)1/p( n∑

i=1

|xi + yi|(p−1)q

)1/q

+

(
n∑
i=1

|yi|p
)1/p( n∑

i=1

|xi + yi|(p−1)q

)1/q

=
(
‖x‖p + ‖y‖p

)
‖x + y‖

p
q
p ,

divide both sides by ‖x + y‖
p
q
p and we obtain the desired result.

B.5 Power Mean Inequality

Theorem B.5 (Power Mean Inequality)

♥

For any x ∈ Rn
≥0, define

Mr(x) =

(
1

n

n∑
i=1

xri

)1/r

, r ∈ R\{0},

with M0(x) = limr→0Mr(x) = n
√
x1 · · · xn, M−∞(x) = limr→−∞Mr(x) = min1≤i≤n xi, and

M+∞(x) = limr→+∞Mr(x) = max1≤i≤n xi. Then, for any −∞ ≤ r ≤ s ≤ +∞, we have

Mr(x) ≤Ms(x).

�

Proof [Proof Sketch] The proof is based on the observation that f(x) = x
s
r is a convex

function since r ≤ s. Then,

f

(
1

n

n∑
i=1

xri

)
≤ 1

n

n∑
i=1

f(xri )⇒

(
1

n

n∑
i=1

xri

) s
r

≤ 1

n

n∑
i=1

(xri )
s
r ⇒

(
1

n

n∑
i=1

xri

) 1
r

≤

(
1

n

n∑
i=1

xsi

) 1
s

.
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