553.665 Introduction to Convexity, Fall 2022 Section 2

Hongyu Cheng

hongyucheng@jhu.edu

September 9, 2022

1 Review

Theorem 1 (Equivalent definitions of relative interior). Let $C \subseteq \mathbb{R}^d$ and $\mathbf{x} \in C$. The following are equivalent.

- 1. $\mathbf{x} \in relint(C)$.
- 2. There exists $\varepsilon > 0$ such that $B(\mathbf{x}, \varepsilon) \cap aff(C) \subseteq C$.
- 3. There exists $\varepsilon > 0$ such that $\forall \mathbf{y} \in aff(C), \mathbf{x} + \varepsilon \left(\frac{\mathbf{y} \mathbf{x}}{\|\|\mathbf{y} \mathbf{x}\|} \right) \in C$.
- 4. $\forall \mathbf{y} \in aff(C), \ \exists \varepsilon_{\mathbf{y}} > 0 \ such \ that \ \mathbf{x} + \varepsilon_{\mathbf{y}}(\mathbf{y} \mathbf{x}) \in C.$

Question 1. Let $X \subseteq \mathbb{R}^d$ be a compact convex set, is it true that cone(X) is closed? Answer. No, a counterexample is provided in Figure 1.

Figure 1: $X = \{(x, y) : x^2 + (y - 1)^2 \le 1\}$, but $\operatorname{cone}(X) = \{(x, y) : y > 0\} \cup \{(0, 0)\}$ is not closed.

Question 2. Let $X, Y \subseteq \mathbb{R}^d$, is it true that $X \subseteq Y$ implies relint $(X) \subseteq \text{relint}(Y)$? **Answer.** No, a counterexample is provided in Figure 2.

Figure 2: $X = \{(x, y) : x \in [-1, 1], y = 0\}, Y = \{(x, y) : x \in [-1, 1], y \in [0, 2]\}$, then $X \subseteq Y$ but $\operatorname{relint}(X) \cap \operatorname{relint}(Y) = \emptyset.$

$\mathbf{2}$ **Exercises**

Exercise 1. Prove that the relative interior of a nonempty convex set is nonempty.

Proof. Hint: Let C be any nonempty convex set with dimension $d \ge 0$, then one can construct a point lie in relint(C) by some affinely independent points in C. Left as Homework. \square

Exercise 2. Let $X \subseteq \mathbb{R}^d$, and let $\mathbf{y} \in \operatorname{conv}(X)$. Suppose *H* is a halfspace such that $\mathbf{y} \in H$. Prove that $H \cap X \neq \emptyset$.

Proof. Let $H = \{\mathbf{x} : \langle \mathbf{a}, \mathbf{x} \rangle \leq \delta\}$ for some $\mathbf{a} \in \mathbb{R}^d$, $\delta > 0$. Since $\mathbf{y} \in \operatorname{conv}(X)$, we have $\mathbf{y} = \sum_{i=1}^k \lambda_i \mathbf{x}^i$ for some $\mathbf{x}^i \in X$, $\lambda_i \geq 0$, $i = 1, \ldots, k$ and $\sum_{i=1}^k \lambda_i = 1$. Now if $H \cap X = \emptyset$, then we would have $\langle \mathbf{a}, \mathbf{x}^i \rangle > \delta$, $\forall i \in \{1, \ldots, k\}$, but this would give $\langle \mathbf{a}, \mathbf{y} \rangle > \delta$, which leads to a contradiction. \Box

Exercise 3. Let $X \subseteq \mathbb{R}^d$. Suppose *H* is a halfspace such that $X \subseteq H$. Prove that

$$\operatorname{conv}\left(H^{=}\cap X\right) = H^{=}\cap\operatorname{conv}\left(X\right),$$

where $H^{=}$ is the hyperplane associated with H.

Note: Talk about the relationship with MILPs, as well as the exercise 11 in session 1.

Proof. Let $H = \{\mathbf{x} : \langle \mathbf{a}, \mathbf{x} \rangle \leq \delta\}$ for some $\mathbf{a} \in \mathbb{R}^d$, $\delta > 0$, and $H^= = \{\mathbf{x} : \langle \mathbf{a}, \mathbf{x} \rangle = \delta\}$. $\forall \mathbf{x} \in H^= \cap \operatorname{conv}(X)$, we have $\langle \mathbf{a}, \mathbf{x} \rangle = \delta$, $\mathbf{x} = \sum_{i=1}^k \lambda_i \mathbf{x}^i$ for some $\mathbf{x}^i \in X$, $\lambda_i \geq 0$, $i = 1, \ldots, k$ and $\sum_{i=1}^{k} \lambda_i = 1$. Therefore,

$$\sum_{i=1}^{k} \lambda_i (\langle \mathbf{a}, \mathbf{x}^i \rangle - \delta) = 0.$$

Observe that $\lambda_i(\langle \mathbf{a}, \mathbf{x}^i \rangle - \delta) \leq 0, \ \forall i \in \{1, \dots, k\}$, then for each *i*, either $\lambda_i = 0$ or $\langle \mathbf{a}, \mathbf{x}^i \rangle = \delta$. Therefore, for those *i* such that $\lambda_i \neq 0$, $\mathbf{x}^i \in H^=$. Thus, $\mathbf{x} \in \operatorname{conv}(H^= \cap X)$.

To show the reverse inclusion, $\forall \mathbf{x} \in \operatorname{conv}(H^{=} \cap X), \mathbf{x} = \sum_{i=1}^{k} \lambda_i \mathbf{x}^i$ for some $\mathbf{x}^i \in H^{=} \cap X, \lambda_i \ge 0, i = 1, \ldots, k$ and $\sum_{i=1}^{k} \lambda_i = 1$. This implies $\mathbf{x} \in \operatorname{conv}(X)$ and $\mathbf{x} \in H^{=}$. That is, $\mathbf{x} \in H^{=} \cap \operatorname{conv}(X)$. \Box

Apply Exercise 3, we can provide an alternate proof of Theorem 2.

Theorem 2 (Carathéodory's theorem (convex version)). Let $X \subseteq \mathbb{R}^d$ and $\mathbf{x} \in conv(X)$. Then \mathbf{x} is a convex combination of at most d+1 points of X.

Proof. Base case: It's easy to check when d = 1.

Induction step: Suppose it's true for all dimensions less than d. $\mathbf{x} \in \operatorname{conv}(X)$, then by definition there exist distinct $\mathbf{x}^1, \ldots, \mathbf{x}^k$ such that $\mathbf{x} \in \operatorname{conv}(\{\mathbf{x}^1, \ldots, \mathbf{x}^k\}) := C$.

Case 1: $\mathbf{x} \in \text{relbd}(C)$, then let $H^{=}$ be a supporting hyperplane of C through \mathbf{x} , then

$$\mathbf{x} \in H^{=} \cap C = H^{=} \cap \operatorname{conv}\left(\{\mathbf{x}^{1}, \dots, \mathbf{x}^{k}\}\right) \stackrel{Exercise \ 3}{=} \operatorname{conv}\left(H^{=} \cap \{\mathbf{x}^{1}, \dots, \mathbf{x}^{k}\}\right).$$

Since $H^{=}$ is (d-1)-dimensional, by induction hypothesis, **x** is a convex combination of at most d points of $H^{=} \cap \{\mathbf{x}^{1}, \ldots, \mathbf{x}^{k}\}$, in particular of at most d points of X.

Case 2: $\mathbf{x} \in \operatorname{relint}(C)$, observe that there exists some $i \in \{1, \ldots, k\}$ such that $\mathbf{x} \neq \mathbf{x}^i$, then let $\mathbf{y} \in \{\mathbf{x}^i + \lambda(\mathbf{x} - \mathbf{x}^i) : \lambda > 0\} \cap \operatorname{relbd}(C)$. Therefore, \mathbf{x} is a convex combination of at most d + 1 points of X since \mathbf{x} is a convex combination of \mathbf{y} and \mathbf{x}^i , and \mathbf{y} is a convex combination of at most d points of X.

Definition 1. Let $X \subseteq \mathbb{R}^d$ be a linear subspace. We define $X^{\perp} := \{ \mathbf{y} \in \mathbb{R}^d : \langle \mathbf{y}, \mathbf{x} \rangle = 0, \forall \mathbf{x} \in X \}$ as the *orthogonal complement* of X.

Definition 2. Let $X \subseteq \mathbb{R}^d$ be any set. We define

$$X^{\circ} := \{ \mathbf{y} \in \mathbb{R}^{d} : \langle \mathbf{y}, \mathbf{x} \rangle \le 1, \ \forall \mathbf{x} \in X \}, \\ X^{\bullet} := \{ \mathbf{y} \in \mathbb{R}^{d} : \langle \mathbf{y}, \mathbf{x} \rangle \le 0, \ \forall \mathbf{x} \in X \}.$$

Exercise 4. Let $X \subseteq \mathbb{R}^d$ be a convex cone, prove that $X^\circ = X^\bullet$.

Proof. It's easy to check that $X^{\bullet} \subseteq X^{\circ}$.

To show the reverse inclusion, $\forall \mathbf{y} \in X^{\circ}$, if $\langle \mathbf{y}, \mathbf{x} \rangle > 0$ for some $\mathbf{x} \in X$, then

$$\langle \mathbf{y}, \underbrace{\frac{2}{\langle \mathbf{y}, \mathbf{x} \rangle}}_{\in X} \mathbf{x} \rangle = 2 > 1$$

contradicts with $\mathbf{y} \in X^{\circ}$.

Remark 1. Similarly, one can prove that $\operatorname{cone}(X)^\circ = X^\bullet$ for any $X \subseteq \mathbb{R}^d$.

Exercise 5. Let $X \subseteq \mathbb{R}^d$ be a linear subspace, prove that $X^\circ = X^{\perp}$.

Proof sketch. Similar to the proof of Exercise 4. $\forall \mathbf{y} \in X^{\circ}$, if $\langle \mathbf{y}, \mathbf{x} \rangle \neq 0$ for some $\mathbf{x} \in X$, then $\langle \mathbf{y}, \frac{2}{\langle \mathbf{y}, \mathbf{x} \rangle} \mathbf{x} \rangle = 2 > 1$ contradicts with $\mathbf{y} \in X^{\circ}$.

Exercise 6. Let $X \subseteq \mathbb{R}^d$ be any set, prove that $(X^{\bullet})^{\bullet} = cl(cone(X))$.

Proof. First we show that X^{\bullet} is a convex cone. $\forall \mathbf{a}, \mathbf{b} \in X^{\bullet}, \lambda, \gamma \geq 0 \implies \forall \mathbf{x} \in X, \langle \lambda \mathbf{a} + \gamma \mathbf{b}, \mathbf{x} \rangle = \lambda \langle \mathbf{a}, \mathbf{x} \rangle + \gamma \langle \mathbf{b}, \mathbf{x} \rangle \leq 0 \implies \lambda \mathbf{a} + \gamma \mathbf{b} \in X^{\bullet} \implies X^{\bullet}$ is a convex cone. Therefore,

$$(X^{\bullet})^{\bullet} = (X^{\bullet})^{\circ} \tag{1}$$

$$= (\operatorname{cone}(X)^{\circ})^{\circ} \tag{2}$$

 $=\operatorname{cone}(X)^{\circ\circ}$

$$= \operatorname{cl}(\operatorname{conv}(\operatorname{cone}(X) \cup \{0\})) \tag{3}$$

$$= \operatorname{cl}(\operatorname{cone}(X)),$$

where (1) follows from Exercise 4, (2) follows from Remark 1, (3) follows from Proposition 2.4.9 (2) in lecture notes. \Box