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1 Review
Theorem 1 (Equivalent definitions of relative interior). Let C ⊆ Rd and x ∈ C. The following are equivalent.

1. x ∈ relint(C).

2. There exists ε > 0 such that B(x, ε) ∩ aff (C) ⊆ C.

3. There exists ε > 0 such that ∀y ∈ aff (C) ,x+ ε
(

y−x
∥y−x∥

)
∈ C.

4. ∀y ∈ aff (C) , ∃εy > 0 such that x+ εy(y − x) ∈ C.

Question 1. Let X ⊆ Rd be a compact convex set, is it true that cone(X) is closed?
Answer. No, a counterexample is provided in Figure 1.
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Figure 1: X = {(x, y) : x2 + (y − 1)2 ≤ 1}, but cone(X) = {(x, y) : y > 0} ∪ {(0, 0)} is not closed.
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Question 2. Let X,Y ⊆ Rd, is it true that X ⊆ Y implies relint(X) ⊆ relint(Y )?
Answer. No, a counterexample is provided in Figure 2.
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Figure 2: X = {(x, y) : x ∈ [−1, 1], y = 0}, Y = {(x, y) : x ∈ [−1, 1], y ∈ [0, 2]}, then X ⊆ Y but
relint(X) ∩ relint(Y ) = ∅.

2 Exercises
Exercise 1. Prove that the relative interior of a nonempty convex set is nonempty.

Proof. Hint: Let C be any nonempty convex set with dimension d ≥ 0, then one can construct a point
lie in relint(C) by some affinely independent points in C. Left as Homework.

Exercise 2. Let X ⊆ Rd, and let y ∈ conv (X). Suppose H is a halfspace such that y ∈ H. Prove that
H ∩X ̸= ∅.

Proof. Let H = {x : ⟨a,x⟩ ≤ δ} for some a ∈ Rd, δ > 0. Since y ∈ conv (X) , we have y =
∑k

i=1 λix
i

for some xi ∈ X, λi ≥ 0, i = 1, . . . , k and
∑k

i=1 λi = 1. Now if H ∩ X = ∅, then we would have
⟨a,xi⟩ > δ, ∀i ∈ {1, . . . , k}, but this would give ⟨a,y⟩ > δ, which leads to a contradiction.

Exercise 3. Let X ⊆ Rd. Suppose H is a halfspace such that X ⊆ H. Prove that

conv (H= ∩X) = H= ∩ conv (X) ,

where H= is the hyperplane associated with H.

Note: Talk about the relationship with MILPs, as well as the exercise 11 in session 1.

Proof. Let H = {x : ⟨a,x⟩ ≤ δ} for some a ∈ Rd, δ > 0, and H= = {x : ⟨a,x⟩ = δ}.
∀x ∈ H= ∩ conv (X), we have ⟨a,x⟩ = δ, x =

∑k
i=1 λix

i for some xi ∈ X, λi ≥ 0, i = 1, . . . , k and∑k
i=1 λi = 1. Therefore,

k∑
i=1

λi(⟨a,xi⟩ − δ) = 0.

Observe that λi(⟨a,xi⟩ − δ) ≤ 0, ∀i ∈ {1, . . . , k}, then for each i, either λi = 0 or ⟨a,xi⟩ = δ. Therefore,
for those i such that λi ̸= 0, xi ∈ H=. Thus, x ∈ conv (H= ∩X).
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To show the reverse inclusion, ∀x ∈ conv (H= ∩X), x =
∑k

i=1 λix
i for some xi ∈ H=∩X, λi ≥ 0, i =

1, . . . , k and
∑k

i=1 λi = 1. This implies x ∈ conv (X) and x ∈ H=. That is, x ∈ H= ∩ conv (X).

Apply Exercise 3, we can provide an alternate proof of Theorem 2.

Theorem 2 (Carathéodory’s theorem (convex version)). Let X ⊆ Rd and x ∈ conv (X). Then x is a
convex combination of at most d+ 1 points of X.

Proof. Base case: It’s easy to check when d = 1.
Induction step: Suppose it’s true for all dimensions less than d. x ∈ conv (X), then by definition there
exist distinct x1, . . . ,xk such that x ∈ conv

(
{x1, . . . ,xk}

)
:= C.

Case 1: x ∈ relbd (C), then let H= be a supporting hyperplane of C through x, then

x ∈ H= ∩ C = H= ∩ conv
(
{x1, . . . ,xk}

)
Exercise 3

= conv
(
H= ∩ {x1, . . . ,xk}

)
.

Since H= is (d− 1)-dimensional, by induction hypothesis, x is a convex combination of at most d points
of H= ∩ {x1, . . . ,xk}, in particular of at most d points of X.

Case 2: x ∈ relint (C), observe that there exists some i ∈ {1, . . . , k} such that x ̸= xi, then let
y ∈ {xi + λ(x − xi) : λ > 0} ∩ relbd (C). Therefore, x is a convex combination of at most d + 1 points
of X since x is a convex combination of y and xi, and y is a convex combination of at most d points of
X.

Definition 1. Let X ⊆ Rd be a linear subspace. We define X⊥ := {y ∈ Rd : ⟨y,x⟩ = 0, ∀x ∈ X} as the
orthogonal complement of X.

Definition 2. Let X ⊆ Rd be any set. We define

X◦ := {y ∈ Rd : ⟨y,x⟩ ≤ 1, ∀x ∈ X},

X• := {y ∈ Rd : ⟨y,x⟩ ≤ 0, ∀x ∈ X}.

Exercise 4. Let X ⊆ Rd be a convex cone, prove that X◦ = X•.

Proof. It’s easy to check that X• ⊆ X◦.
To show the reverse inclusion, ∀y ∈ X◦, if ⟨y,x⟩ > 0 for some x ∈ X, then

⟨y, 2

⟨y,x⟩
x︸ ︷︷ ︸

∈X

⟩ = 2 > 1

contradicts with y ∈ X◦.

Remark 1. Similarly, one can prove that cone(X)◦ = X• for any X ⊆ Rd.

Exercise 5. Let X ⊆ Rd be a linear subspace, prove that X◦ = X⊥.

Proof sketch. Similar to the proof of Exercise 4. ∀y ∈ X◦, if ⟨y,x⟩ ̸= 0 for some x ∈ X, then ⟨y, 2
⟨y,x⟩x⟩ =

2 > 1 contradicts with y ∈ X◦.
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Exercise 6. Let X ⊆ Rd be any set, prove that (X•)• = cl(cone(X)).

Proof. First we show that X• is a convex cone. ∀a,b ∈ X•, λ, γ ≥ 0 =⇒ ∀x ∈ X, ⟨λa + γb,x⟩ =
λ⟨a,x⟩+ γ⟨b,x⟩ ≤ 0 =⇒ λa+ γb ∈ X• =⇒ X• is a convex cone. Therefore,

(X•)• = (X•)◦ (1)
= (cone(X)◦)◦ (2)
= cone(X)◦◦

= cl(conv(cone(X) ∪ {0})) (3)
= cl(cone(X)),

where (1) follows from Exercise 4, (2) follows from Remark 1, (3) follows from Proposition 2.4.9 (2) in
lecture notes.
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